New learning discoveries about Methyl 3-bromo-2-methylbenzoate

According to the analysis of related databases, 99548-54-6, the application of this compound in the production field has become more and more popular.

In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 99548-54-6 as follows. 99548-54-6

A solution of methyl 3-bromo-2-methylbenzoate (from for example AstaTech, 24.35 g, 106 mmol) in benzene (300 mL) was treated with N-bromosuccinimide (22.7 g, 128 mmol) followed by benzoyl peroxide, 95% (1.3 g, 5.35 mmol). The reaction mixture was flushed with nitrogen and kept under nitrogen. The reaction mixture was heated at 80C for 2 days. The reaction mixture was concentrated under reduced pressure and treated with hexanes (200 mL). The resulting solids were filtered off, washed with hexanes then with 25% EtOAc / hexanes. The filtrate was concentrated under reduced pressure and the residue was absorbed directly onto silica gel. The product was purified by chromatography (ISCOCombiflash, 330 g, 200 ml/min, 0-8.7% EtOAc / Hexanes over 30 minutes) to yield the title compound (32.4 g, 105 mmol, 99% yield) as an orange liquid. LC/MS: RT= 1.13 min, m/z = 226.8/228.9.

According to the analysis of related databases, 99548-54-6, the application of this compound in the production field has become more and more popular.

Reference:
Patent; GLAXOSMITHKLINE INTELLECTUAL PROPERTY DEVELOPMENT LIMITED; HARLING, John David; NEIPP, Christopher E.; PENDRAK, Israil; SMITH, Ian Edward David; TERRELL, Lamont Roscoe; YOUNGMAN, Mark; (120 pag.)WO2017/46036; (2017); A1;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics