Properties and Exciting Facts About Dimethyl 5-aminoisophthalate

Recommanded Product: 99-27-4. About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Panigrahi, A; Sahu, BP; Mandani, S; Nayak, D; Giri, S; Sarma, TK or concate me.

Recommanded Product: 99-27-4. In 2019 J PHOTOCH PHOTOBIO A published article about AGGREGATION-INDUCED EMISSION; CONJUGATED POLYMER NANOPARTICLES; INTRAMOLECULAR EXCIMER FORMATION; LIGHT-UP PROBE; PICRIC ACID; TUNABLE EMISSION; TETRAPHENYLETHYLENE; EFFICIENCY; SENSORS; SIZE in [Panigrahi, Abhiram; Mandani, Sonam; Sarma, Tridib K.] Indian Inst Technol Indore, Discipline Chem, Khandwa Rd, Indore 453552, Madhya Pradesh, India; [Sahu, Basanta P.; Nayak, Debasis] Indian Inst Technol Indore, Ctr Biosci & Biomed Engn, Khandwa Rd, Indore 453552, Madhya Pradesh, India; [Giri, Santanab] Haldia Inst Technol, Sch Appl Sci & Humanities, Haldia 721657, India in 2019, Cited 66. The Name is Dimethyl 5-aminoisophthalate. Through research, I have a further understanding and discovery of 99-27-4.

Development of organic nanoparticles with high fluorescence, good biocompatibility along with strong resistance to photobleaching through simple synthetic routes is important for diverse applications such as sensing and bioimaging. Herein, we present the development of a pyrene excimer nanoaggregate which shows aggregation induced emission (AIE) effect in a solvent mixture of THE and water. The pyrene based fluorescent probe, dimethyl-5-(pyren-1-ylmethyleneamino)isophthalate (5-DP) was synthesized through a simple single step condensation reaction from inexpensive reagents. The photophysical studies of nanoaggregated system further corroborates the AIE active behavior of 5-DP probe at different water fractions (f(w) = 0% to 90%), where the hydrogen bonding interaction between imine and water molecules led to suppression of photoinduced electron transfer (PET) inducing significant enhancement in fluorescence. The highly photostable nanoaggregates were explored as a selective fluorescence turn off sensor for phenolic nitroaromatics and the chemo-selectivity was highly pronounced for 2,4,6-trinitrophenol (picric acid), that showed efficient quenching in aqueous as well as solid phase, with a detection limit of 10 nM in aqueous medium. The quenching efficiency of the nanoaggregates can be ascribed to a combination of factors including efficient fluorescence resonance energy transfer, inner filter effect and coulombic interaction between picric acid and the aggregated probe molecules. Further, random aggregation of the pyrene derivative could be controlled for the formation of fluorescent spherical nanoparticles using Pluoronics P-123 block copolymers as encapsulating agents. The resulting composite could be used as a neoteric cell imaging probe with significantly less cytotoxicity, thus showing their potential biological applications.

Recommanded Product: 99-27-4. About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Panigrahi, A; Sahu, BP; Mandani, S; Nayak, D; Giri, S; Sarma, TK or concate me.

Reference:
Patent; ASTRA ZENECA AB; NPS PHARMACEUTICALS, INC.; WO2004/14881; (2004); A2;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Top Picks: new discover of 99-27-4

Safety of Dimethyl 5-aminoisophthalate. About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Chen, W; Zuo, HL; Li, YX; Liu, J; Zhou, XL or concate me.

An article Design, Synthesis and Structure-Activity Relationships of Plant-Based 2-Aryl-3,4-dihydroisoquinolin-2-iums as Potential Antifungal Agents WOS:000486906400026 published article about SANGUINARINE; SALTS in [Chen, Wei; Zuo, Huailong; Liu, Jiang; Zhou, Xianli] Southwest Jiaotong Univ, Sch Lifer Sci & Engn, Chengdu 610031, Sichuan, Peoples R China; [Li, Yuxin] Nankai Univ, State Key Lab Elementoorgan Chem, Tianjin 300071, Peoples R China in 2019, Cited 17. Safety of Dimethyl 5-aminoisophthalate. The Name is Dimethyl 5-aminoisophthalate. Through research, I have a further understanding and discovery of 99-27-4

In order to discover more potent antifungal, a series of 2-aryl-3,4-dihydroisoquinolin-2-iums were reasonable designed and productive synthesized by introducing benzoic acid and phenol pharmacophores into the 2-position of isoquinoline. Their structures were identified by NMR and HRMS. The preliminary in vitro antifungal results showed that most of the title compounds exhibited moderate to significant inhibitory activities against various phytopathogenic fungi at 50 mu g.mL(-1), and were equal to controls (chlorothalonil, carbendazim). The concentration of 50% inhibition rate (EC50]) of 2-(3-ethoxycarbonyl-phenyl)-3,4-dihydroisoquinolin-2-ium (4j) against R. solani was 3.8495 mu g.mL(-1), which was significantly superior to chlorothalonil (4.6328 mu g.mL(-1)). All the EC50 values of 5 compounds (7.4583 similar to 15.4495 mu g.mL(-1)) against R. cerealis were better than chlorothalonil (16.0137 mu g.mL(-1)), and 2-(4-methoxycarbonylphenyl)-3,4-dihydroisoquinolin-2-ium (4f) is the best one. The present results provide valuable information for development of plant-based antifungal agents.

Safety of Dimethyl 5-aminoisophthalate. About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Chen, W; Zuo, HL; Li, YX; Liu, J; Zhou, XL or concate me.

Reference:
Patent; ASTRA ZENECA AB; NPS PHARMACEUTICALS, INC.; WO2004/14881; (2004); A2;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Archives for Chemistry Experiments of 99-27-4

Product Details of 99-27-4. About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Chen, L; Zhao, HB; Ni, YP; Fu, T; Wu, WS; Wang, XL; Wang, YZ or concate me.

I found the field of Chemistry; Energy & Fuels; Materials Science very interesting. Saw the article 3D printable robust shape memory PET copolyesters with fire safety via pi-stacking and synergistic crosslinking published in 2019. Product Details of 99-27-4, Reprint Addresses Wang, XL; Wang, YZ (corresponding author), Sichuan Univ, Natl Engn Lab Ecofriendly Polymer Mat Sichuan, Collaborat Innovat Ctr Ecofriendly & Fire Safety, State Key Lab Polymer Mat Engn,Coll Light Ind Tex, Chengdu 610064, Sichuan, Peoples R China.. The CAS is 99-27-4. Through research, I have a further understanding and discovery of Dimethyl 5-aminoisophthalate

The practical problems of insufficient mechanical strength, poor processability, tedious synthesis and flammability facing shape memory polymers have limited their further usage in industrial fields, especially in construction and aerospace. A novel and very simple method of ternary polymerization is presented here to prepare multi-functional copolyesters from general poly(ethylene terephthalate) (PET) through the new well-designed third monomer that features pendent phenylacetylene-phenylimide units. The pi-pi stacking between phenylacetylene groups as a reversible net-point not only endows the copolyesters with good shape memory and self-healability, but also reinforces the interchain interaction, leading to high tensile strength (79.6-89.6 MPa). Interestingly enough, the phenylacetylene can synergistically crosslink with the unsaturated C N group generated from the phenylimide during burning, resulting in excellent flame retardancy. Thermoplastic smart copolyesters can be designed into fire alarms and can also be used for 3D printing. The printed geometries exhibit good shape memory behaviors, which could be deformed into a small size to save space during transportation/storage and allow manufacturing freedom for space applications.

Product Details of 99-27-4. About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Chen, L; Zhao, HB; Ni, YP; Fu, T; Wu, WS; Wang, XL; Wang, YZ or concate me.

Reference:
Patent; ASTRA ZENECA AB; NPS PHARMACEUTICALS, INC.; WO2004/14881; (2004); A2;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Final Thoughts on Chemistry for Dimethyl 5-aminoisophthalate

About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Derasp, JS; Beauchemin, AM or concate me.. Quality Control of Dimethyl 5-aminoisophthalate

Quality Control of Dimethyl 5-aminoisophthalate. I found the field of Chemistry very interesting. Saw the article Rhodium-Catalyzed Synthesis of Amides from Functionalized Blocked Isocyanates published in 2019, Reprint Addresses Beauchemin, AM (corresponding author), Univ Ottawa, Dept Chem & Biomol Sci, Ctr Catalysis Res & Innovat, Ottawa, ON K1N 6N5, Canada.. The CAS is 99-27-4. Through research, I have a further understanding and discovery of Dimethyl 5-aminoisophthalate.

Isocyanates are useful building blocks for the synthesis of amides, although their widespread use has been limited by their high reactivity, which often results in poor functional group tolerance and a propensity to oligomerize. Herein, a rhodium-catalyzed synthesis of amides is described coupling boroxines with blocked (masked) isocyanates. The success of the reaction hinges on the ability to form both the isocyanate and the organorhodium intermediates in situ. Relying on masked isocyanate precursors and on the high reactivity of the organorhodium intermediate results in broad functional group tolerance, including protic nucleophilic groups such as amines, anilines, and alcohols.

About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Derasp, JS; Beauchemin, AM or concate me.. Quality Control of Dimethyl 5-aminoisophthalate

Reference:
Patent; ASTRA ZENECA AB; NPS PHARMACEUTICALS, INC.; WO2004/14881; (2004); A2;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Our Top Choice Compound:C10H11NO4

COA of Formula: C10H11NO4. About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Gupta, V; Mandal, SK or concate me.

An article A Highly Stable Triazole-Functionalized Metal-Organic Framework Integrated with Exposed Metal Sites for Selective CO2 Capture and Conversion WOS:000511268600001 published article about CARBON-DIOXIDE CAPTURE; SECONDARY BUILDING UNITS; TOPOLOGICAL ANALYSIS; CRYSTAL-STRUCTURES; CHEMICAL FIXATION; GAS-ADSORPTION; SEPARATION; DESIGN; CONSTRUCTION; CHEMISTRY in [Gupta, Vijay; Mandal, Sanjay K.] Indian Inst Sci Educ & Res Mohali, Dept Chem Sci, Sect 81,Manauli PO, Mohali 140306, Punjab, India in 2020, Cited 73. COA of Formula: C10H11NO4. The Name is Dimethyl 5-aminoisophthalate. Through research, I have a further understanding and discovery of 99-27-4

A new triazole-functionalized tetracarboxylic acid ligand (H4L) has been synthesized and utilized for the fabrication of a 3D Zn-II organic framework with a Zn-4(-COO)(6) cluster as the secondary building unit. The framework exhibits very good thermal stability and consists of dual functionalities of exposed Lewis acidic metal sites and accessible nitrogen-donor Lewis basic sites. The Lewis basic nitrogen sites in the framework serve as CO2 binding sites for highly selective CO2 capture and the presence of exposed Lewis acidic metal sites in the framework make it an efficient heterogeneous catalyst for the chemical fixation of CO2 into value-added cyclic carbonates under ambient conditions.

COA of Formula: C10H11NO4. About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Gupta, V; Mandal, SK or concate me.

Reference:
Patent; ASTRA ZENECA AB; NPS PHARMACEUTICALS, INC.; WO2004/14881; (2004); A2;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Chemistry Milestones Of 99-27-4

Computed Properties of C10H11NO4. About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Liu, BW; Zhao, HB; Chen, L; Chen, L; Wang, XL; Wang, YZ or concate me.

Authors Liu, BW; Zhao, HB; Chen, L; Chen, L; Wang, XL; Wang, YZ in ELSEVIER SCI LTD published article about in [Liu, Bo-Wen; Zhao, Hai-Bo; Chen, Lin; Chen, Li; Wang, Xiu-Li; Wang, Yu-Zhong] Sichuan Univ, Collaborat Innovat Ctr Ecofriendly & Fire Safety, Natl Engn Lab Ecofriendly Polymer Mat Sichuan, Sch Chem Engn,State Key Lab Polymer Mat Engn,MOE, Chengdu 610064, Peoples R China in 2021, Cited 60. Computed Properties of C10H11NO4. The Name is Dimethyl 5-aminoisophthalate. Through research, I have a further understanding and discovery of 99-27-4

Conventional methods to improve the flame retardancy of polymeric materials usually involve the use of flame-retardant elements such as Cl, Br and P, however, their use may bring more smoke and toxic gases hazards, and more importantly, cause non-negligible environmental and ecological problems. In this work, we put forward a novel green strategy that eliminates the use of any conventional flame-retardant elements to improve the flame retardancy by incorporating a synergistically cross-linkable structure (named PN) containing phenylacetylene and phenylimide groups. The resulting PN copolymer exhibited an excellent 55% lower smoke release rate and 68% lower heat release rate than the pure polymer, as well as a high LOI value of 32% and UL-94 V-0 rating with excellent anti-dripping performance. TG-DSC, rheological and FTIR results proved the high cross-linking ability of the PN copolymer due to the synergistic cross-linking effect between the imide-isoimide rearrangement of phenylimide and the self-cross-linking of phenylacetylene. The SEM, Raman and Py-GC/MS results further upheld the condensed phase flame-retardant mechanism. This eco-friendly synergistic cross-linking strategy provided new perspective for the design and synthesis of polymeric materials with excellent flame retardancy, great anti-dripping performance, and low release of heat, smoke, and toxic gas.

Computed Properties of C10H11NO4. About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Liu, BW; Zhao, HB; Chen, L; Chen, L; Wang, XL; Wang, YZ or concate me.

Reference:
Patent; ASTRA ZENECA AB; NPS PHARMACEUTICALS, INC.; WO2004/14881; (2004); A2;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

More research is needed about Dimethyl 5-aminoisophthalate

Recommanded Product: 99-27-4. About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Montes-Andres, H; Leo, P; Munoz, A; Rodriguez-Dieguez, A; Orcajo, G; Choquesillo-Lazarte, D; Martos, C; Martinez, F; Botas, JA; Calleja, G or concate me.

Recommanded Product: 99-27-4. Authors Montes-Andres, H; Leo, P; Munoz, A; Rodriguez-Dieguez, A; Orcajo, G; Choquesillo-Lazarte, D; Martos, C; Martinez, F; Botas, JA; Calleja, G in AMER CHEMICAL SOC published article about in [Montes-Andres, Helena; Orcajo, Gisela; Martos, Carmen; Botas, Juan A.; Calleja, Guillermo] Rey Juan Carlos Univ, Dept Chem Energy & Mech Technol, Mostoles 28933, Spain; [Leo, Pedro; Munoz, Antonio; Martinez, Fernando] Rey Juan Carlos Univ, Dept Chem & Environm Technol, Mostoles 28933, Spain; [Rodriguez-Dieguez, Antonio] Univ Granada, Dept Inorgan Chem, Granada, Spain; [Choquesillo-Lazarte, Duane] Univ Granada, Lab Estudios Cristalog, CSIC, IACT, Granada 18100, Spain in 2020, Cited 66. The Name is Dimethyl 5-aminoisophthalate. Through research, I have a further understanding and discovery of 99-27-4

Herein, two novel isostructural metal-organic frameworks (MOFs) M-URJC-4 (M = Co, Ni; URJC = Universidad Rey Juan Carlos) with open metal sites, permanent microposity, and large surface areas and pore volumes have been developed. These novel MOFs, with polyhedral morphology, crystallize in the monoclinic P2(1)/c space group, exhibiting a three-dimensional structure with microporous channels along the c axis. Initially, they were fully characterized and tested in hydrogen (H-2) adsorption at different conditions of temperature and pressure. The physisorption capacities of both materials surpassed the gravimetric H-2 uptake shown by most MOF materials under the same conditions. On the basis of the outstanding adsorption properties, the Ni-URJC-4 material was used as a catalyst in a one-pot reductive amination reaction using various carbonyl compounds and primary amines. A possible chemical pathway to obtain secondary amines was proposed via imine formation, and remarkable performances were accomplished. This work evidences the dual ability of M-URJC-4 materials to be used as a H-2 adsorbent and a catalyst in reductive amination reactions, activating molecular H-2 at low pressures for the reduction of C=N double bonds and providing reference structural features for the design of new versatile heterogeneous materials for industrial application.

Recommanded Product: 99-27-4. About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Montes-Andres, H; Leo, P; Munoz, A; Rodriguez-Dieguez, A; Orcajo, G; Choquesillo-Lazarte, D; Martos, C; Martinez, F; Botas, JA; Calleja, G or concate me.

Reference:
Patent; ASTRA ZENECA AB; NPS PHARMACEUTICALS, INC.; WO2004/14881; (2004); A2;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Our Top Choice Compound:99-27-4

About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Chen, W; Zuo, HL; Li, YX; Liu, J; Zhou, XL or concate me.. Product Details of 99-27-4

Product Details of 99-27-4. Chen, W; Zuo, HL; Li, YX; Liu, J; Zhou, XL in [Chen, Wei; Zuo, Huailong; Liu, Jiang; Zhou, Xianli] Southwest Jiaotong Univ, Sch Lifer Sci & Engn, Chengdu 610031, Sichuan, Peoples R China; [Li, Yuxin] Nankai Univ, State Key Lab Elementoorgan Chem, Tianjin 300071, Peoples R China published Design, Synthesis and Structure-Activity Relationships of Plant-Based 2-Aryl-3,4-dihydroisoquinolin-2-iums as Potential Antifungal Agents in 2019, Cited 17. The Name is Dimethyl 5-aminoisophthalate. Through research, I have a further understanding and discovery of 99-27-4.

In order to discover more potent antifungal, a series of 2-aryl-3,4-dihydroisoquinolin-2-iums were reasonable designed and productive synthesized by introducing benzoic acid and phenol pharmacophores into the 2-position of isoquinoline. Their structures were identified by NMR and HRMS. The preliminary in vitro antifungal results showed that most of the title compounds exhibited moderate to significant inhibitory activities against various phytopathogenic fungi at 50 mu g.mL(-1), and were equal to controls (chlorothalonil, carbendazim). The concentration of 50% inhibition rate (EC50]) of 2-(3-ethoxycarbonyl-phenyl)-3,4-dihydroisoquinolin-2-ium (4j) against R. solani was 3.8495 mu g.mL(-1), which was significantly superior to chlorothalonil (4.6328 mu g.mL(-1)). All the EC50 values of 5 compounds (7.4583 similar to 15.4495 mu g.mL(-1)) against R. cerealis were better than chlorothalonil (16.0137 mu g.mL(-1)), and 2-(4-methoxycarbonylphenyl)-3,4-dihydroisoquinolin-2-ium (4f) is the best one. The present results provide valuable information for development of plant-based antifungal agents.

About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Chen, W; Zuo, HL; Li, YX; Liu, J; Zhou, XL or concate me.. Product Details of 99-27-4

Reference:
Patent; ASTRA ZENECA AB; NPS PHARMACEUTICALS, INC.; WO2004/14881; (2004); A2;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

What kind of challenge would you like to see in a future of compound:Dimethyl 5-aminoisophthalate

About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Karmakar, A; Paul, A; Rubio, GMDM; Soliman, MMA; Fatima, M; da Silva, CG; Pombeiro, AJL or concate me.. Category: esters-buliding-blocks

An article Highly Efficient Bifunctional Amide Functionalized Zn and Cd Metal Organic Frameworks for One-Pot Cascade Deacetalization-Knoevenagel Reactions WOS:000494742900001 published article about ACID; CATALYSIS; MOFS in [Karmakar, Anirban; Paul, Anup; Rubio, Guilherme M. D. M.; Soliman, Mohamed M. A.; Fatima, M.; Guedes da Silva, C.; Pombeiro, Armando J. L.] Univ Lisbon, Inst Super Tecn, Ctr Quim Estrutural, Lisbon, Portugal in 2019, Cited 31. Category: esters-buliding-blocks. The Name is Dimethyl 5-aminoisophthalate. Through research, I have a further understanding and discovery of 99-27-4

A pyridine-based amide functionalized tetracarboxylic acid, 5,5 ‘-(pyridine-2, 6-dicarbonyl)bis(azanediyl)}diisophthalic acid (H4L), was synthesized and its coordination chemistry toward zinc(II) and cadmium(II) ions was studied. The reactions of H4L with Zn(NO3)(2).6H(2)O and Cd(NO3)(2).4H(2)O led to its full or partial deprotonation, respectively, and the formation of the 2D coordination polymers [Zn-2(L)(H2O)(4)](n).4n(H2O) (1) and [Cd-3(HL)(2)(DMF)(4)](n).4n(DMF) (2) (DMF = N,N’-dimethylformamide), respectively. They were characterized by elemental analysis, FT-IR, photoluminescence, thermogravimetry, and single-crystal and powder X-ray diffraction. In 1, the L4- ligand is planar with every carboxylate anion binding a Zn(II) cation and giving rise to a 2D grid with the metals with tetrahedral environments. In 2, the combination of bridging HL3- and dimethylformamide to form trinuclear Cd(II) clusters engenders secondary building block units and generates a layer-type 2D network with the metals with octahedral and pentagonal bipyramid coordination geometries. The topological analyses of 1 and 2 reveal 2,4-connected and 3,6-connected binodal nets, respectively. On account of the presence of Lewis acid (Zn or Cd centers) as well as basic (uncoordinated pyridine and amide groups) sites, 1 and (to a much lower extent) 2 effectively catalyze the one-pot cascade deacetalization-Knoevenagel condensation reactions under quite mild conditions. They act as heterogeneous catalysts, being easy to recover and recycle without losing activity.

About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Karmakar, A; Paul, A; Rubio, GMDM; Soliman, MMA; Fatima, M; da Silva, CG; Pombeiro, AJL or concate me.. Category: esters-buliding-blocks

Reference:
Patent; ASTRA ZENECA AB; NPS PHARMACEUTICALS, INC.; WO2004/14881; (2004); A2;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Archives for Chemistry Experiments of Dimethyl 5-aminoisophthalate

About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Derasp, JS; Beauchemin, AM or concate me.. COA of Formula: C10H11NO4

Authors Derasp, JS; Beauchemin, AM in AMER CHEMICAL SOC published article about N-ISOCYANATES; CYCLOADDITION REACTIONS; CARBOXYLIC-ACIDS; BOND FORMATION; AMIDATION; ISOTHIOCYANATES; HYDROAMINATION; 1,4-ADDITION; ALLYLATION; ACTIVATION in [Derasp, Joshua S.; Beauchemin, Andre M.] Univ Ottawa, Dept Chem & Biomol Sci, Ctr Catalysis Res & Innovat, Ottawa, ON K1N 6N5, Canada in 2019, Cited 80. COA of Formula: C10H11NO4. The Name is Dimethyl 5-aminoisophthalate. Through research, I have a further understanding and discovery of 99-27-4

Isocyanates are useful building blocks for the synthesis of amides, although their widespread use has been limited by their high reactivity, which often results in poor functional group tolerance and a propensity to oligomerize. Herein, a rhodium-catalyzed synthesis of amides is described coupling boroxines with blocked (masked) isocyanates. The success of the reaction hinges on the ability to form both the isocyanate and the organorhodium intermediates in situ. Relying on masked isocyanate precursors and on the high reactivity of the organorhodium intermediate results in broad functional group tolerance, including protic nucleophilic groups such as amines, anilines, and alcohols.

About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Derasp, JS; Beauchemin, AM or concate me.. COA of Formula: C10H11NO4

Reference:
Patent; ASTRA ZENECA AB; NPS PHARMACEUTICALS, INC.; WO2004/14881; (2004); A2;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics