Yu, Haiyan’s team published research in Journal of the Science of Food and Agriculture in 2019 | CAS: 5405-41-4

Journal of the Science of Food and Agriculture published new progress about Alcohols Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Formula: C6H12O3.

Yu, Haiyan published the artcileCharacterization of the volatile profile of Chinese rice wine by comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry, Formula: C6H12O3, the main research area is Chinese rice wine volatile profile 2D GC MS; Chinese rice wine; comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry; surrogate odor activity value; volatile compounds.

BACKGROUND : Chinese rice wine (CRW) is a kind of traditional fermentation wine in China. Aged CRW is more popular among consumers owing to its harmonious and pleasant flavor. The volatile profile of CRW has been extensively studied using gas chromatog./mass spectrometry (GC/MS). However, flavor components in CRW are far richer than those detected by GC/MS. To obtain more information about the volatile profile of fresh (5-yr) and aged (10-yr) CRW, a method based on comprehensive two-dimensional gas chromatog. coupled to quadrupole mass spectrometry (GC×GC/qMS) was developed. The major volatile compounds contributing to the characteristic aroma of fresh and aged CRW were identified by surrogate odor activity value (OAV). RESULTS : Ninety-eight volatile compounds were detected in the 5-yr CRW samples and 107 in the 10-yr samples by GC×GC/qMS. The numbers of compounds detected by GC×GC/qMS for the 5-yr and 10-yr samples were 71.4 and 65.4% higher than those detected by GC/MS. The aged wine had a more complex volatile profile than the fresh wine, with an increase in esters and aldehydes and a decrease in alcs. and organic acids. There were 22 volatile compounds with surrogate OAV > 1. Nine were the potent key aroma compounds in CRW: Et isovalerate (OAV 500-33 500), Et butyrate (OAV 84-334), Et isobutyrate (OAV 49-170), 2-nonenal (OAV 20-100), Et heptanoate (OAV 1-74), Et hexanoate (OAV 60-77), phenylethyl alc. (OAV 2-18), benzaldehyde (OAV 28-30) and hexanal (OAV 4-11). CONCLUSION : GC×GC/qMS showed better separation than GC/MS. The presented GC×GC/qMS method was suitable for characterization of the volatile profile of CRW. © 2019 Society of Chem. Industry.

Journal of the Science of Food and Agriculture published new progress about Alcohols Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Formula: C6H12O3.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Shui, Mengzhu’s team published research in Molecules in 2019 | CAS: 5405-41-4

Molecules published new progress about Alcohols Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Recommanded Product: Ethyl 3-hydroxybutanoate.

Shui, Mengzhu published the artcileCharacterization of key aroma compounds and construction of flavor base module of Chinese sweet oranges, Recommanded Product: Ethyl 3-hydroxybutanoate, the main research area is aroma compound construction flavor module chinese sweet orange; Chinese sweet orange; flavor; flavor base module; key aroma compounds; notes.

Sweet orange flavor, with its refreshing, joyful and attractive aroma, is favored by the majority of consumers all over the world. However, the industry terminol. between flavorists for flavor evaluation is a bit vague and not intuitive for customers. Therefore, the study focused on anal. of sweet orange aroma and establishment of base module of orange flavor. The approach to the research involves screening key aroma compounds, identifying the attributes aroma and building base module of sweet orange. The notes of sweet orange flavor were determined by GC-O olfaction and sensory evaluation. 25 key aroma compounds with OAV ≥ 1 were screened and divided into eight notes: citrus, fruity, fresh, green, peely, woody, fatty, floral. Partial least squares regression (PLSR) was used to further verify the corresponding relationship between the volatile substances and notes. Terpenes, esters, aldehydes and alcs. compounds can provide these notes. Based on the notes, 8 base modules of sweet orange were built by selecting and matching aroma ingredients. Through this study, beginners could be trained according to the 8 notes of base modules and flavorists can engage in dialogue with different raw material sourcing teams or providers.

Molecules published new progress about Alcohols Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Recommanded Product: Ethyl 3-hydroxybutanoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Lin, Xue’s team published research in Food Science and Biotechnology in 2019-06-30 | CAS: 5405-41-4

Food Science and Biotechnology published new progress about Alcohols Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Category: esters-buliding-blocks.

Lin, Xue published the artcileEvaluation of the volatile profile of wax apple (Syzygium samarangense) wines fermented with different commercial Saccharomyces cerevisiae strains, Category: esters-buliding-blocks, the main research area is Saccharomyces Syzygium wine fermentation volatile profile; Fermentation; Fruit wine; Saccharomyces cerevisiae; Volatile compound; Wax apple.

The effect of four com. Saccharomyces cerevisiae strains (D254, VIC, BV818, and RV100) on the volatile profile of wax apple (Syzygium samarangense) wine was investigated in this study. Alcs. and esters were the most two abundant groups of identified volatiles in wax apple wines. However, different S. cerevisiae strains possess various capacities in releasing/synthesizing volatiles with varied mRNA levels of genes involved in volatiles metabolism during wax apple wine fermentation VIC, which yielded the highest total concentration of volatiles and largest number of volatiles with odor activity value (OAV) > 1, could be used as a starter culture to produce wax apple wine characterized with intense aroma. D254 and RV100, which produced the greatest variety of volatiles and scored the highest in global aroma, resp., could be used to enhance the wine complexity. Four wax apple wines could be differentiated by their main volatile compounds

Food Science and Biotechnology published new progress about Alcohols Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Category: esters-buliding-blocks.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Zhang, Rong’s team published research in Molecules in 2019 | CAS: 5405-41-4

Molecules published new progress about Alcohols Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, COA of Formula: C6H12O3.

Zhang, Rong published the artcileEffect of PLA/PBAT antibacterial film on storage quality of passion fruit during the shelf-life, COA of Formula: C6H12O3, the main research area is Passiflora fruit shelf life PLA PBAT antibacterial blend film; PLA/PBAT antibacterial films; passion fruit; storage quality.

In this experiment, we studied the effect of poly(lactic acid)/poly(butylene adipate-co-terephthalate) (PLA/PBAT) blend films on the efficiency of passion fruit preservation at 20°C. The weight loss, shrinkage index, firmness, and total sugar of passion fruit packaged with PLA/PBAT films had no significant differences compared with PE films during 21 days (p > 0.05). PLA/PBAT films can more effectively reduce the rising of ethanol content and delay the total acid, ascorbic acid, and sensory evaluation. Compared with unpackaged (CK) and polyethylene (PE) films, PLA/PBAT films are more conducive to preserve the overall flavor of passion fruit during storage time, in agreement with sensory evaluation, tested by E-nose, E-tongue, and GC-MS, which also proved that it can effectively maintain the edible quality of passion fruit during storage time. We believe that our study makes a significant contribution to literature because it paves the way to the generalization and application of packaging films based on composite antibacterial polymers and facilitates the commercialization of fresh passion fruit as an important health food.

Molecules published new progress about Alcohols Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, COA of Formula: C6H12O3.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Marullo, Philippe’s team published research in International Journal of Molecular Sciences in 2021 | CAS: 5405-41-4

International Journal of Molecular Sciences published new progress about Acetates Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Application of Ethyl 3-hydroxybutanoate.

Marullo, Philippe published the artcileMetabolic, organoleptic and transcriptomic impact of Saccharomyces cerevisiae genes involved in the biosynthesis of linear and substituted esters, Application of Ethyl 3-hydroxybutanoate, the main research area is Saccharomyces metabolism organoleptic transcriptomic biosynthesis; MGL2; YJU3; histone acetylation; substituted ester metabolism; wine fermentation.

Esters constitute a broad family of volatile compounds impacting the organoleptic properties of many beverages, including wine and beer. They can be classified according to their chem. structure. Higher alc. acetates differ from fatty acid Et esters, whereas a third group, substituted Et esters, contributes to the fruitiness of red wines. Derived from yeast metabolism, the biosynthesis of higher alc. acetates and fatty acid Et esters has been widely investigated at the enzymic and genetic levels. As previously reported, two pairs of esterases, resp. encoded by the paralogue genes ATF1 and ATF2, and EEB1 and EHT1, are mostly involved in the biosynthesis of higher alc. acetates and fatty acid Et esters. These esterases have a moderate effect on the biosynthesis of substituted Et esters, which depend on mono-acyl lipases encoded by MGL2 and YJU3. The functional characterization of such genes helps to improve our understanding of substituted ester metabolism in the context of wine alc. fermentation In order to evaluate the overall sensorial impact of esters, we attempted to produce young red wines without esters by generating a multiple esterase-free strain (δatf1, δatf2, δeeb1, and δeht1). Surprisingly, it was not possible to obtain the deletion of MGL2 in the δatf1/δatf2/δeeb1/δeht1 background, highlighting unsuspected genetic incompatibilities between ATF1 and MGL2. A preliminary RNA-seq anal. depicted the overall effect of the δatf1/δatf2/δeeb1/δeht1 genotype that triggers the expression shift of 1124 genes involved in nitrogen and lipid metabolism, but also chromatin organization and histone acetylation. These findings reveal unsuspected regulatory roles of ester metabolism in genome expression for the first time.

International Journal of Molecular Sciences published new progress about Acetates Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Application of Ethyl 3-hydroxybutanoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Alfonzo, Antonio’s team published research in International Journal of Food Microbiology in 2021-12-16 | CAS: 5405-41-4

International Journal of Food Microbiology published new progress about 26S rRNA Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Formula: C6H12O3.

Alfonzo, Antonio published the artcileEffects of different yeast strains, nutrients and glutathione-rich inactivated yeast addition on the aroma characteristics of Catarratto wines, Formula: C6H12O3, the main research area is Saccharomyces wine aroma glutathione; Alcoholic fermentation; Catarratto grape variety; Glutathione; Saccharomyces cerevisiae; Volatile organic compounds (VOC’s); Wine aroma.

Catarratto is one of the most common non-aromatic white grape varieties cultivated in Sicily (Southern Italy). In order to improve the aromatic expression of Catarratto wines a trial was undertaken to investigate the effect of yeast strain, nutrition and reduced glutathione. Variables included two Saccharomyces cerevisiae strains, an oenol. strain (GR1) and one isolated from honey byproducts (SPF52), three different nutrition regimes (Stimula Sauvignon Blanc (SS), Stimula Chardonnay (SC) and classic nutrition practice), and a specific inactivated yeast rich in reduced glutathione to prevent oxidative processes [Glutastar (GIY)] ensuing in ten treatments (T1-T10). Microbiol. and chem. parameters demonstrated the aptitude of strain SPF52 to successfully conduct alc. fermentation During fermentation, the Saccharomyces yeast populations ranged from 7 to 8 logarithmic CFU/mL. All wines had a final ethanol content ranging between 12.91 and 13.85% (volume/volume). The dominance of the two starter strains over native yeast populations was higher than 97% as estimated by interdelta anal. The addition of nutrients SS or SC increased the aromatic complexity of the wines as reflected by volatile organic compounds (VOCs) composition and sensory profiles. In particular, 32 VOCs were identified; alcs. (62.46-81.1%), thiols (0.27-0.87%), ethers (0.09-0.16%), aldehydes (0-1.21%), ketones (0-2.28%), carboxylic acids (4.21-12.32%), esters (0-10.85%), lactones (0.9-1.49%) and other compounds (0.77-6.9%). Sensory anal. demonstrated a significant impact on wine aroma in relation to yeast starter strain used, the type of nutrition (SS, SC or classic nutrition) and the presence/absence of GIY. The wines produced with GR1 yeast strain and SS (T2), SPF52 with SC (T9) both in presence of GIY showed higher overall quality. Trials T2 and T9 showed the highest scores for 13 and 18 attributes, resp. The different nutrition, addition of GIY and the yeast starter strains diversified and enhanced sensory expression of Catarratto wines.

International Journal of Food Microbiology published new progress about 26S rRNA Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Formula: C6H12O3.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Sanchez, Ramon’s team published research in Food Chemistry in 2022-02-01 | CAS: 5405-41-4

Food Chemistry published new progress about Acetates Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Synthetic Route of 5405-41-4.

Sanchez, Ramon published the artcileVolatile composition and sensory properties of wines from vineyards affected by iron chlorosis, Synthetic Route of 5405-41-4, the main research area is iron chlorosis 2phenylacetaldehyde 2phenylethanol 2phenylethyl acetate black fruit stress; Aroma; Nutritional stress; Tempranillo; Vitis vinifera.

Recent studies have shown that mild to moderate iron chlorosis can have pos. effects on grape quality potential, including volatile profile. The main objective of this work was to investigate, for the first time, how moderate iron stress in grapevines affects the presence of volatile organic compounds (VOCs) in wines. The study was carried out during 2018-2019 seasons, in 20 Tempranillo vineyard subzones with different degree of iron deficiency, located in Ribera del Duero (North-Central Spain). The results showed that moderate iron stress increased in wines the concentrations of VOCs associated with floral notes, such as 2-phenylacetaldehyde, 2-phenylethanol and 2-phenylethyl acetate, while reducing the presence of C6-alcs., responsible for green-herbaceous aroma. A favorable reduction of pH and a betterment of parameters related to color were detected in wines from iron deficient subzones. Chlorosis incidence was associated to improvements in wine sensory attributes as layer intensity, black fruit and aroma intensity.

Food Chemistry published new progress about Acetates Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Synthetic Route of 5405-41-4.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Bonatto Machado de Castilhos, Mauricio’s team published research in Food Chemistry in 2020-05-01 | CAS: 5405-41-4

Food Chemistry published new progress about Norisoprenoids Role: ANT (Analyte), PRP (Properties), ANST (Analytical Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Application In Synthesis of 5405-41-4.

Bonatto Machado de Castilhos, Mauricio published the artcileSensory descriptive and comprehensive GC-MS as suitable tools to characterize the effects of alternative procedures on wine aroma. Part II: BRS Rub́ea and BRS Cora, Application In Synthesis of 5405-41-4, the main research area is winemaking aroma; Drying; Non-Vitis vinifera; Sensory descriptive analysis; Submerged cap; Volatile compounds; Wine.

The present manuscript assessed the volatile and sensory profiles of BRS Rub́ea and BRS Cora wines elaborated from traditional, grape pre-drying and submerged cap winemaking. The wines contained a higher concentration of acetates (257 mg L-1 to 547 mg L-1) and Et and Me esters (183 mg L-1 to 456 mg L-1) in comparison with Vitis vinifera wines. PCA was applied (explaining 68.43% of the total variance), and the higher concentration of Et decanoate and Et octanoate, di-Et succinate, hydroxylinalool, and 2-Ph ethanol was responsible for describing the BRS Rub́ea wines as fruity/foxy. They also presented an intense jam note, probably due to their higher concentration of syringol and guaiacol. BRS Cora wines exhibited a vegetal note, possibly due to their higher concentration of 1-hexanol and cis-3-hexenol. Wines from pre-dried grapes presented higher concentration of furfural, assuming a bitter/burned almond aroma. Alternative winemaking accounted for suitable changes in wine aroma, enhancing wine quality.

Food Chemistry published new progress about Norisoprenoids Role: ANT (Analyte), PRP (Properties), ANST (Analytical Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Application In Synthesis of 5405-41-4.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Yuan, Lu’s team published research in Journal of Food Science and Technology (New Delhi, India) in 2022-01-31 | CAS: 5405-41-4

Journal of Food Science and Technology (New Delhi, India) published new progress about Aldehydes Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Recommanded Product: Ethyl 3-hydroxybutanoate.

Yuan, Lu published the artcileOptimization of fermentation conditions for fermented green jujube wine and its quality analysis during winemaking, Recommanded Product: Ethyl 3-hydroxybutanoate, the main research area is green jujube winemaking fermentation quality analysis; Alcoholic fermentation; Flavor compounds; Green jujube wine; Nutritional composition; Response surface methodology.

The objective was to study the optimization of fermentation conditions for fermented green jujube wine and quality anal. This study investigated the fermentation process conditions, the changes in physicochem. indexes, antioxidant capacity and volatile compounds measured from green jujube wine during winemaking. The optimized conditions (the initial sugar, yeast addition, fermentation time and SO2 treatments) for green jujube wine were 24%, 0.3%, 8 d, 80 mg/L, resp. The results showed that the variation trend of different substances in green jujube wine in different fermentation periods were different. In the process of alc. fermentation, the green jujube wine had a high 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging ability, 2,2′-amino-di (2-ethyl-benzothiazoline sulfonic acid-6) ammonium salt (ABTS) free radical scavenging ability and reducing power. Furthermore, a total of 50 volatile compounds were identified in green jujube wine, in which the relative content of aldehydes, ketones, heterocyclic and aromatic compounds were significantly reduced after fermentation

Journal of Food Science and Technology (New Delhi, India) published new progress about Aldehydes Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Recommanded Product: Ethyl 3-hydroxybutanoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Sun, Qingyang’s team published research in HortScience in 2022 | CAS: 5405-41-4

HortScience published new progress about Amino acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Recommanded Product: Ethyl 3-hydroxybutanoate.

Sun, Qingyang published the artcileRain-shelter cultivation affects the accumulation of volatiles in ‘shuijing’ grape berries during development, Recommanded Product: Ethyl 3-hydroxybutanoate, the main research area is volatile grape berry development rain shelter cultivation.

Rain-shelter cultivation could protect grape berries from many diseases and affect grape berry quality. However, there have been few studies of the effects of rain-shelter cultivation on the accumulation of volatiles in Shuijing grapes grown in Yunnan Province. Therefore, the goal of this research was to explore the effects of rain-shelter cultivation on the accumulation of volatiles in Shuijing grape berries during development. The Shuijing grapes used during this study were grown in the Yunnan Province of southwest China in two consecutive vintages (2018 and 2019). The results showed that rain-shelter cultivation promoted grape ripening and inhibited volatiles synthesis in Shuijing grape berries. However, the application of rain shelters did not affect the accumulation patterns of volatiles; instead, it affected the concentrations of volatiles in Shuijing grape berries, especially during the maturation phase [12-15 wk after flowering (WAF)]. The concentrations of isoprenoid-derived volatiles (2019), fatty acid-derived volatiles, and amino acid-derived benzenoids in Shuijing grape berries were decreased by rain-shelter cultivation during the maturation phase. The concentration of 2,5-dimethyl-4-methoxy-3(2H)-furanone (mesifurane) was also decreased by rain-shelter cultivation during the late maturation phase (14 and 15 WAF). A principal component anal. (PCA) indicated that the vintage had a much greater influence on the physicochem. parameters and volatiles of the Shuijing grape berries than the cultivation method. This work reveals the formation and accumulation patterns of volatiles of Shuijing grape berries under rain-shelter cultivation during development and has significance for exploring the potential of rain-shelter cultivation in grape-producing regions with excessive rainfall.

HortScience published new progress about Amino acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Recommanded Product: Ethyl 3-hydroxybutanoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics