Liu, Ping’s team published research in Journal of Food Science in 2019 | CAS: 5405-41-4

Journal of Food Science published new progress about Actinomucor elegans. 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, COA of Formula: C6H12O3.

Liu, Ping published the artcileEffects of Different Fermentation Strains on the Flavor Characteristics of Fermented Soybean Curd, COA of Formula: C6H12O3, the main research area is Actinomucor Rhizopus Mucor fermented soybean curd flavor; E-nose; HS-SPME-GC-MS; fermentation strains; fermented soybean curd; sensory evaluation.

The effects of different fermentation strains on the flavor characteristics of fermented soybean curd (FSC) were investigated in this study. Fresh tofu was fermented by Actinomucor elegans, Rhizopus arrhizus, Mucor racemosus, and Rhizopus chinensis, either alone or in various combinations. The FSC manufacturing process included prefermentation by different strains at 28 °C for 60 h, followed by salting at 16 °C for 7 days and finally proceeding postfermentation at 25 °C for 35 days. Subsequently, five tested samples were obtained, namely, sample A (fermented by A. elegans alone), R (fermented by R. arrhizus alone), AR (fermented by A. elegans and R. arrhizus at 5:1), AM (fermented by A. elegans and M. racemosus at 1:1), and RR (fermented by R. arrhizus and R. chinensis at 7:3). The flavors of the five samples were determined by E-nose, sensory evaluation, and GC-MS. E-nose system observed significant discriminations by principal component anal. and linear discriminant anal. anal. Sensory evaluation ranked the overall sensory scores: AR>AM>A>RR>R. As shown in GC-MS results, sample AR also had, on average, the highest level of many volatiles. Out of 10 critical volatiles, the detected frequency of samples AR, AM, RR, A, and R was 10, 9, 9, 8, and 7, resp. PLS2 regression model was used to explore the influence on flavor quality of different strains. All three analytic methods revealed similar results, with sample AR providing the best flavor quality, while the opposite was the case with sample R. Therefore, it could be concluded that A. elegans and R. arrhizus at 5:1 (volume/volume) was the optimal combination, and may likely promote the production of critical volatile compounds Practical Application : The flavors of fermented soybean curds are influenced by various factors such as physicochem. and microorganism during the fermentation surroundings. The results of this work not only provide valuable information for FSC flavor studies, but can also guide the FSC industry to improve flavor quality by applying the most appropriate production strains.

Journal of Food Science published new progress about Actinomucor elegans. 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, COA of Formula: C6H12O3.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Ichikawa, Eri’s team published research in Bioscience, Biotechnology, and Biochemistry in 2019 | CAS: 5405-41-4

Bioscience, Biotechnology, and Biochemistry published new progress about Alcoholic beverages. 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Product Details of C6H12O3.

Ichikawa, Eri published the artcileAnalysis of metabolites in Japanese alcoholic beverage sake made from the sake rice Koshitanrei, Product Details of C6H12O3, the main research area is Oryza alanine methionine sake alc beverage Japan; Koshitanrei; metabolite; metabolome analysis; rice; sake.

In sake brewing, the steamed rice is used in two ways, added to sake-mash (as kake-mai) and making koji. The rice is an important determinant for the quality of sake, as the metabolites in sake affect its taste/aroma. The sake rice Koshitanrei (KOS) was developed in Niigata Prefecture by genetically crossing two sake rice, Gohyakumangoku and Yamadanishiki. However, the metabolites in sake from KOS have not been analyzed. Here, to investigate the characteristic metabolites in sake from KOS, we performed two types of small-scale sake-fermentation tests changing only the rice used for kake-mai or total rice (both kake-mai and koji) by these three rice cultivars and examined the effect of KOS on sake metabolites by the metabolome anal. method using UPLC-QTOF-MS. We identified the peaks/metabolites, whose intensity in sake from KOS was higher/lower than those from the other cultivars. The brewing properties of KOS were partially characterized by this anal.

Bioscience, Biotechnology, and Biochemistry published new progress about Alcoholic beverages. 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Product Details of C6H12O3.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Chen, Cheng’s team published research in Molecular Catalysis in 2021-06-30 | CAS: 5405-41-4

Molecular Catalysis published new progress about Candida parapsilosis. 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Application In Synthesis of 5405-41-4.

Chen, Cheng published the artcileAsymmetric reduction of 2-chloro-3-oxo-ester into enantiomerically high pure diltiazem precursor by a Candida ketoreductase, Application In Synthesis of 5405-41-4, the main research area is Candida ketoreductase asym reduction oxoester chiral synthon diltiazem.

Me (2R,3S)-3-(4-methoxyphenyl)glycidate [(2R,3S)-MPGM] is an advanced chiral synthon for the synthesis of the cardiovascular drug diltiazem. It can be easily accessed by cyclizing the reduction products of Me 2-chloro-3-(4-methoxyphenyl)-3-oxo-propanoate. Herein, we report an identified carbonyl reductase (CpKR) from Candida parapsilosis that displayed an excellent stereoselectivity toward the keto substituent at the C3-position of the 2-chloro-3-oxo-ester. The engineered Escherichia coli cells harboring CpKR gene were directly applied for the asym. reduction of keto ester 1a with a space-time yield of 46 g L-1 d-1, which represents the highest productivity in bio-reduction reported so far. The isolated chiral alc. products were then applied to the chem. synthesis of (2R,3S)-MPGM in 99% ee and a total yield of 76% in the two-step chemo-enzymic reactions, which far exceeded the maximum theor. yield (50%) of the existing industrial process based on a lipase-catalyzed resolution of racemic MPGM. This work provides a promising eco-friendly and cost-effective route toward industrial synthesis of pharmaceutically relevant diltiazem.

Molecular Catalysis published new progress about Candida parapsilosis. 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Application In Synthesis of 5405-41-4.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Lv, Wen-Rui’s team published research in Inorganic Chemistry in 2021-06-07 | CAS: 5405-41-4

Inorganic Chemistry published new progress about Aldehydes Role: RCT (Reactant), RACT (Reactant or Reagent). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Safety of Ethyl 3-hydroxybutanoate.

Lv, Wen-Rui published the artcileSynthesis, Structure, and Catalytic Hydrogenation Activity of [NO]-Chelate Half-Sandwich Iridium Complexes with Schiff Base Ligands, Safety of Ethyl 3-hydroxybutanoate, the main research area is enaminoketonate sandwich iridium Schiff base complex preparation hydrogenation catalyst; iridium Schiff base complex catalyst hydrogenation ketone aldehyde nitro; crystal structure half sandwich iridium enaminoketonate Schiff base complex; mol structure half sandwich iridium enaminoketonate Schiff base complex.

N,O-coordinate Ir(III) complexes with a half-sandwich motif bearing Schiff base ligands for catalytic hydrogenation of nitro and carbonyl substrates were synthesized. All Ir complexes showed efficient catalytic activity for the hydrogenation of ketones, aldehydes, and nitro-containing compounds using clean H2 as reducing reagent. The Ir catalyst displayed the highest TON values of 960 and 950 in the hydrogenation of carbonyl and nitro substrates, resp. Various types of substrates with different substituted groups afforded corresponding products in excellent yields. All N,O-coordinate Ir(III) complexes 1-4 were well characterized by IR, NMR, HRMS, and elemental anal. The mol. structure of complex 1 was further characterized by single-crystal x-ray determination

Inorganic Chemistry published new progress about Aldehydes Role: RCT (Reactant), RACT (Reactant or Reagent). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Safety of Ethyl 3-hydroxybutanoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Pelosi, Azzurra’s team published research in Advanced Synthesis & Catalysis in 2019 | CAS: 5405-41-4

Advanced Synthesis & Catalysis published new progress about Alcohols Role: RCT (Reactant), RACT (Reactant or Reagent). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, HPLC of Formula: 5405-41-4.

Pelosi, Azzurra published the artcileReductive Etherification of Aldehydes and Ketones with Alcohols and Triethylsilane Catalysed by Yb(OTf)3: an Efficient One-Pot Benzylation of Alcohols, HPLC of Formula: 5405-41-4, the main research area is ether preparation; aldehyde ketone alc reductive etherification triethylsilane ytterbium triflate catalyst.

The one-pot synthesis of sym. and unsym. ethers from aldehydes and ketones can be conveniently performed using Yb(OTf)3 as catalyst and triethylsilane as reducing agent in presence of alcs. This methodol. leads to the synthesis of ether derivatives with good yields. Notably, this process resulted a useful tool to protect alcs. as benzyl ether derivatives using differently substituted benzaldehydes as protecting agents under mild conditions. A plausible mechanism was also proposed.

Advanced Synthesis & Catalysis published new progress about Alcohols Role: RCT (Reactant), RACT (Reactant or Reagent). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, HPLC of Formula: 5405-41-4.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Yao, Zi-Jian’s team published research in Dalton Transactions in 2019 | CAS: 5405-41-4

Dalton Transactions published new progress about Alcohols Role: SPN (Synthetic Preparation), PREP (Preparation). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Application In Synthesis of 5405-41-4.

Yao, Zi-Jian published the artcileCatalytic hydrogenation of carbonyl and nitro compounds using an [N,O]-chelate half-sandwich ruthenium catalyst, Application In Synthesis of 5405-41-4, the main research area is ruthenium sandwich catalyst preparation crystal structure; nitro compound ruthenium sandwich catalyst hydrogenation; carbonyl compound ruthenium sandwich catalyst hydrogenation.

A series of N,O-chelate half-sandwich ruthenium complexes for both carbonyl and nitro compound hydrogenation have been synthesized based on β-ketoamino ligands. All complexes exhibited high activity for the catalytic hydrogenation of a series of ketones and nitroarenes with mol. H2 as the reducing reagent in aqueous medium. Consequently, the catalytic system showed the catalytic TON values of 950 for 1-phenylethanol in acetophenone hydrogenation and 1960 for 1-chloro-4-nitrobenzene in p-chloroaniline hydrogenation. Good catalytic activity was displayed for various kinds of substrates with either electron-donating or electron-withdrawing groups. The neutral ruthenium complexes 1-4 were fully characterized using NMR, IR, and elemental anal. Mol. structures of complexes 2 and 4 were further confirmed using single-crystal X-ray diffraction anal.

Dalton Transactions published new progress about Alcohols Role: SPN (Synthetic Preparation), PREP (Preparation). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Application In Synthesis of 5405-41-4.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Tang, Ke’s team published research in Molecules in 2019 | CAS: 5405-41-4

Molecules published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Name: Ethyl 3-hydroxybutanoate.

Tang, Ke published the artcileChemical and sensory characterization of cabernet sauvignon wines from the Chinese loess plateau region, Name: Ethyl 3-hydroxybutanoate, the main research area is cabernet sauvignon wine chem sensory profile China; Cabernet Sauvignon; GC–O; Loess Plateau; aroma; sensory profile.

In this study, the aroma profiles of Cabernet Sauvignon wines from a new grape growing region, Loess Plateau, China, were established by gas chromatog.-olfactometry, gas chromatog.-mass spectrometry and sensory anal. The sensory profiles of wines form five different young vineyards in the Loess Plateau region were obtained by descriptive anal. Blackcurrant (p < 0.01), pear and dried plum (p < 0.05), mushroom, smoked and green pepper (p < 0.1) had significant differences on the five vineyards. A total of 76 odor-active aroma compounds were identified in the wines, and 45 volatile compounds were selected as those having the greatest impact on the aroma components and these were quantitated by five different methods. In addition, the correlation model of the Loess Plateau region's sensory characteristics and aroma compounds was established by partial least squares regression (PLSR) to determine the influence of various aroma active substances on aroma attributes. Molecules published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Name: Ethyl 3-hydroxybutanoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Abouelenein, Doaa’s team published research in Molecules in 2021 | CAS: 5405-41-4

Molecules published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Formula: C6H12O3.

Abouelenein, Doaa published the artcileInfluence of Freezing and Different Drying Methods on Volatile Profiles of Strawberry and Analysis of Volatile Compounds of Strawberry Commercial Jams, Formula: C6H12O3, the main research area is freezing drying volatile compound strawberry com jam; HS-SPME/GC-MS; aroma; commercial jams; drying methods; freezing; strawberry; volatile organic compounds.

Strawberry is the most consumed berry fruit worldwide due to its unique aroma and flavor. Drying fruits to produce a powder represents one of the possible conservation methods to extend their shelf-life. The aim of the present study was to compare the influence of freezing and different drying methods on the volatile profile of strawberry using the HS-SPME/GC-MS method, in addition to anal. of strawberry jam volatiles. A total of 165 compounds were identified, accounting for 85.03-96.88% of the total volatile compositions Results and PCA showed that freezing and each drying process affected the volatile profile in a different way, and the most remarkable representative differential volatiles were Et hexanoate, hexyl acetate, (E)-2-hexenyl acetate, mesifurane, (E)-nerolidol, γ-decalactone, 1-hexanol, and acetoin. Shade air-dried, frozen, freeze-dried, and oven-dried 45°C samples retained more of the fruity and sweet aromas of strawberry, representing more than 68% of the total aroma intensity according to the literature. In contrast, the microwave-drying method showed drastic loss of fruity esters. Strawberry jams demonstrated complete destruction of esters and alcs. in most jams, while terpenes were significantly increased. These findings help better understand the aroma of strawberry and provide a guide for the effects of drying, freezing, and jam processing.

Molecules published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Formula: C6H12O3.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Perestrelo, Rosa’s team published research in Microchemical Journal in 2019-07-31 | CAS: 5405-41-4

Microchemical Journal published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, HPLC of Formula: 5405-41-4.

Perestrelo, Rosa published the artcileUntargeted fingerprinting of cider volatiles from different geographical regions by HS-SPME/GC-MS, HPLC of Formula: 5405-41-4, the main research area is untargeted fingerprinting cider volatile headspace solid phase microextraction.

The volat. fingerprint of ciders produced in different geog. regions from Madeira Island was established using headspace solid phase microextraction combined with gas chromatog. mass spectrometry (HS-SPME/GC-MS) in order to explore the effects of geog. region on the volatile pattern ciders in addition to identify potential mol. geog. markers. A total of 107 volatile organic compounds (VOCs) belonging to different chem. families were identified from which 50 VOCs are common to all ciders analyzed. Significant differences in the relative content of VOCs from ciders of different geog. regions were observed The potential of the identified VOCs for ciders discrimination according to region was assessed through chemometric tools, such as principal components anal. (PCA) and partial least squares-discriminant anal. (PLS-DA). The PCA showed significant differences among ciders from different island geog. regions. Fifteen VOCs responsible for ciders discrimination were identified by PLS-DA. Fifteen VOCs, namely five terpenoids, four alcs., three acids and three esters, present variable importance in projection (VIP) values higher than one. Our findings provide relevant information related to volatile signature of ciders produced in Madeira Island, which may be a useful tool to cider-making process contributing to improve the quality of the final product. In addition, the geog. discrimination recognizes the unique and distinctive characteristics that will allow in the future to protect the quality and typicity of products originating in certain geog. regions.

Microchemical Journal published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, HPLC of Formula: 5405-41-4.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Simonato, Barbara’s team published research in LWT–Food Science and Technology in 2021-03-31 | CAS: 5405-41-4

LWT–Food Science and Technology published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Formula: C6H12O3.

Simonato, Barbara published the artcileEffects of post-harvest fungal infection of apples on chemical characteristics of cider, Formula: C6H12O3, the main research area is fungal infection apple cider.

The impact of fungal post-harvest infection of apple on the chem. composition of cider was investigated through a comparative anal. of ciders obtained from apples (Gala variety) sep. infected by five fungal species (Alternaria alternata, Botrytis cinerea, Diplodia seriata, Monilinia fructigena, and Penicillium expansum) and cider from sound apples. The content of several flavor-active mols. belonging to different chem. groups, such as alcs., esters, acids, aldehydes, phenols, and lactones, significantly varied among ciders. Particularly, cider from sound apples had a higher concentration of Et ester acetate, fatty acid Et esters and fatty acids, mols. that contribute to fruity and sweet scent. Principal component anal. well discriminated ciders, evidencing species-specific fungal effect. Differences in precursor availability in juices and biosynthesis pathways in fungi could explain changes in aroma profile of ciders. This study provides information on the potential risk to produce cider from infected apples due to the possible quality depreciation.

LWT–Food Science and Technology published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Formula: C6H12O3.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics