The synthetic route of 3195-24-2 has been constantly updated, and we look forward to future research findings.
Application of 3195-24-2,Some common heterocyclic compound, 3195-24-2, name is Diethyl 2,2-diallylmalonate, molecular formula is C13H20O4, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.
A study of the RC of several substrates has also been carried out. Reactions were run in toluene at 80C in the presence of 1 to 5 mol% of cis-2, the higher catalyst loading being only necessary for the formation 17 featuring a tetra-substituted double bond (Table 4 below, entry 3). The RCM of unhindered malonate derivatives was achieved in short reaction times (less than 1 hour) and in good yields. Indeed, di- and tri-substituted cyclopentenes 15 and 9 were obtained in quantitative yields (entries 1 & 2). Nevertheless, highly constrained substrate 16 could not be cyclized with full conversion, even after 24h at 80C, and was isolated in 70% yield (entry 3). Finally, 6- and 7-membered rings 19 and 21 were obtained in respectively 96 and 87% yield, and no increase in reaction time compared to 5-membered ring 15 (entries 4 & 5). Of note, a dilution to 0.05M was necessary to obtain 21 without observing parallel formation of polymers. We next attempted the RCM of cyano analogues 24 and 26 (entries 6 & 7). Non-hindered cyclopentene 23 was isolated in good yield (88%), indicating that the presence of potentially chelating cyano groups was not detrimental to catalysis. Nevertheless, cis-2 was unable to promote the formation of 25, the starting material remaining unreacted. Tosylamine-based olefins were next investigated. The cyclization of these compounds was found very efficient regardless of hindrance and ring size. Indeed, 5-, 6- and 7-membered compounds 7, 27 and 29 were isolated in excellent yields (entries 8-10), albeit a slight increase in reaction time was needed for larger rings. Catalyst loading of only 2 mol% was necessary to achieve the cyclizations of 30 and 32 to obtain tetrasubstituted 5- and 6-membered rings 31 and 33 in good yields (entries 11 & 12), even so 5 hours of reaction were needed for dihydropyrrole 31. Amide and ether-based substrates were also efficiently cyclized, with yields spanning from 80% to 99% (entries 13-17). Increasing the ring size to 6 or 7 members was not detrimental, as products 39, 41 and 43 were obtained excellent yields in less than 1 hour (entries 15-17). From this study, catalyst c/s-2 seemed to be highly tolerant to functionalities and able to effect RCM easily.This utility of the complexes of the invention is illustrated further in figure 4 which shows RCM of compound 30 (table 4 entry 11 ) in toluene at 80C carried out with a range of Ru complexes. Trans or cis-2 both rapidly produce a high conversion whereas prior art complexes Hov-ll, G-ll, M2 (structures shown in Scheme 1 ) and M31 (which is the pyridine complex 1 in scheme 2) did not produce any better than about 60% conversion (complex M2) under these conditions
The synthetic route of 3195-24-2 has been constantly updated, and we look forward to future research findings.
Reference:
Patent; UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS; CAZIN, Catherine; WO2011/117571; (2011); A1;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics