Cationic DABCO-Based Catalyst for Site-Selective C-H Alkylation via Photoinduced Hydrogen-Atom Transfer was written by Matsumoto, Akira;Yamamoto, Masanori;Maruoka, Keiji. And the article was included in ACS Catalysis in 2022.Application of 3063-94-3 The following contents are mentioned in the article:
A series of hydrogen-atom transfer (HAT) catalysts based on the readily available and tunable 1,4-diazabicyclo[2.2.2]octane (DABCO) structure was designed, and their photoinduced HAT catalysis ability was demonstrated. The combination of HAT catalyst with an acridinium-based organophotoredox catalyst enabled efficient and site-selective C-H alkylation of substrates ranging from unactivated hydrocarbons to complex mols. Notably, a HAT catalyst with addnl. substituents adjacent to a nitrogen atom further improved the site selectivity. Mechanistic studies suggested that the N-substituent of the catalyst played a crucial role, assisting in the generation of a dicationic aminium radical as an active species for the HAT process. This study involved multiple reactions and reactants, such as 1,1,1,3,3,3-Hexafluoroisopropylmethacrylate (cas: 3063-94-3Application of 3063-94-3).
1,1,1,3,3,3-Hexafluoroisopropylmethacrylate (cas: 3063-94-3) belongs to esters. Esters perform as high-grade solvents for a broad array of plastics, plasticizers, resins, and lacquers, and are one of the largest classes of synthetic lubricants on the commercial market. Acyl chlorides and acid anhydrides alcoholysis is another way to produce esters. Acyl chlorides and acid anhydrides react with alcohols to produce esters. Anydrous conditions are recommended since both acyl chlorides and acid anhydrides react with water.Application of 3063-94-3
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics