Triquet, Juliette’s team published research in Journal of Materials Science in 57 | CAS: 15625-89-5

Journal of Materials Science published new progress about 15625-89-5. 15625-89-5 belongs to esters-buliding-blocks, auxiliary class Polymerization Reagents,Crosslinkers, name is Trimethylolpropane triacrylate, and the molecular formula is C20H12N2O2, Recommanded Product: Trimethylolpropane triacrylate.

Triquet, Juliette published the artcileChemical surface densification of hardwood through lateral monomer impregnation and in situ EB polymerization, Part II: effect of irradiation dose on hardness, wood chemistry and polymer conversion, Recommanded Product: Trimethylolpropane triacrylate, the publication is Journal of Materials Science (2022), 57(12), 6656-6668, database is CAplus.

Surface chem. densification was recently introduced as a low cost and fast process to improve surface hardness of wood. The asym. d. profile at the surface due to polymer filled cells was achieved through unilateral impregnation of monomers and their fast in situ polymerization under electron beam radiations. This study investigates the effect of electron beam dose on the newly developed material in order to optimize and increase the performances. Effect of doses from 25 to 125 kGy on wood and polymer in situ were investigated by FTIR spectroscopy, confocal Raman microscopy and GC-MS quantification of extracted residual monomers. Brinell hardness of irradiated controls decreased with increased dose while it remained unchanged for densified samples. The effect of 25 kGy on the irradiated wood controls was insignificant, but evidence of cellulose depolymerization and decrease of hydrogen bonds strength was found at higher dose through FTIR anal. Raman investigation of the acrylate conversion in situ showed that most of the polymerization was achieved with 25 kGy. Residual monomers were still present in the wood samples up to 100 kGy. Thus, 25 kGy was sufficient to polymerize monomers in situ and increase Brinell hardness of densified wood while avoiding degradation of wood. However, 100 kGy was necessary to ensure highest conversion and no residual monomers. This study is opening perspectives on radiation effects on wood for optimal materials development.

Journal of Materials Science published new progress about 15625-89-5. 15625-89-5 belongs to esters-buliding-blocks, auxiliary class Polymerization Reagents,Crosslinkers, name is Trimethylolpropane triacrylate, and the molecular formula is C20H12N2O2, Recommanded Product: Trimethylolpropane triacrylate.

Referemce:
https://en.wikipedia.org/wiki/Ester,
Ester – an overview | ScienceDirect Topics

Lunzer, Markus’s team published research in Chemistry of Materials in 34 | CAS: 15625-89-5

Chemistry of Materials published new progress about 15625-89-5. 15625-89-5 belongs to esters-buliding-blocks, auxiliary class Polymerization Reagents,Crosslinkers, name is Trimethylolpropane triacrylate, and the molecular formula is C15H20O6, Name: Trimethylolpropane triacrylate.

Lunzer, Markus published the artcileBeyond the Threshold: A Study of Chalcogenophene-Based Two-Photon Initiators, Name: Trimethylolpropane triacrylate, the publication is Chemistry of Materials (2022), 34(7), 3042-3052, database is CAplus and MEDLINE.

A series of nine soluble, sym. chalcogenophenes bearing hexyl-substituted triphenylamines, indolocarbazoles, or phenylcarbazoles was designed and synthesized as potential two-photon absorption (2PA) initiators. A detailed photophys. anal. of these mols. revealed good 2PA properties of the series and, in particular, a strong influence of selenium on the 2PA cross sections, rendering these materials especially promising new 2PA photoinitiators. Structuring and threshold tests proved the efficiency and broad spectral versatility of two selenium-containing lead compounds as well as their applicability in an acrylate resin formulation. A comparison with com. photoinitiators Irg369 and BAPO as well as sensitizer ITX showed that the newly designed selenium-based materials TPA-S and TPA-BBS outperform these traditional initiators by far both in terms of reactivity and dose. Moreover, by increasing the ultralow concentration of TPA-BBS, a further reduction of the polymerization threshold can be achieved, revealing the great potential of this series for application in two-photon polymerization (2PP) systems where only low laser power is available.

Chemistry of Materials published new progress about 15625-89-5. 15625-89-5 belongs to esters-buliding-blocks, auxiliary class Polymerization Reagents,Crosslinkers, name is Trimethylolpropane triacrylate, and the molecular formula is C15H20O6, Name: Trimethylolpropane triacrylate.

Referemce:
https://en.wikipedia.org/wiki/Ester,
Ester – an overview | ScienceDirect Topics

Sharma, Shilpa’s team published research in Journal of Biomaterials Applications in 37 | CAS: 15625-89-5

Journal of Biomaterials Applications published new progress about 15625-89-5. 15625-89-5 belongs to esters-buliding-blocks, auxiliary class Polymerization Reagents,Crosslinkers, name is Trimethylolpropane triacrylate, and the molecular formula is C14H17FN4O3, Safety of Trimethylolpropane triacrylate.

Sharma, Shilpa published the artcilePolyaspartic acid, 2-acrylamido-2-Methyl propane sulfonic acid and sodium alginate based biocompatible stimuli responsive polymer gel for controlled release of GHK-Cu peptide for wound healing, Safety of Trimethylolpropane triacrylate, the publication is Journal of Biomaterials Applications (2022), 37(1), 132-150, database is CAplus and MEDLINE.

Stimuli responsive polymer based on Polyaspartic acid, 2-Acrylamido-2-methylpropane sulfonic acid and sodium alginate (NaAlg) were synthesized using two crosslinkers Ethylene glycol dimethacrylate (EGDMA) and TMPTA (Trimethylolpropane triacrylate). The polymers were standardized and optimized to obtain a polymer with maximum swelling in distilled water, saline, glucose and solutions of varying pH. The synthesized polymer swelled well in distilled water, glucose solution and acidic- alk. medium. The biocompatibility of the polymer was evaluated for blood compatibility and protein adsorption. The polymer with maximum swelling property was used for peptide release studies. The polymer was further used to study the peptide encapsulation and release efficiency of the polymeric material which was confirmed by FTIR, Scanning Emission Microscope and EDX. The encapsulation efficiency of the polymer for encapsulating (glycyl-l-histidyl-l-lysine-copper) GHK-Cu was observed to be 55.26% and peptide release of 51.84% was observed for Ethylene glycol dimethacrylate based polymer after 24 h whereas for Trimethylolpropane triacrylate based polymer the encapsulation efficiency was observed to be 49.6% and release was 39.01%. The EGDMA based polymer was further examined under in vivo studies in order to evaluate the efficiency of the synthesized polymer. The in vivo studies include wound closure, histopathol. anal., biochem. and toxicity assay. The material has shown promising results for both in vivo and in vitro studies.

Journal of Biomaterials Applications published new progress about 15625-89-5. 15625-89-5 belongs to esters-buliding-blocks, auxiliary class Polymerization Reagents,Crosslinkers, name is Trimethylolpropane triacrylate, and the molecular formula is C14H17FN4O3, Safety of Trimethylolpropane triacrylate.

Referemce:
https://en.wikipedia.org/wiki/Ester,
Ester – an overview | ScienceDirect Topics