Taniguchi, Moyu’s team published research in Journal of Bioscience and Bioengineering in 2021-07-31 | CAS: 123-29-5

Journal of Bioscience and Bioengineering published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Related Products of esters-buliding-blocks.

Taniguchi, Moyu published the artcileProfiling of volatile compounds in Japanese sake stored in sherry casks using solid phase microextraction/gas chromatography/mass spectrometry analysis, Related Products of esters-buliding-blocks, the main research area is volatile compound sherry casks solid phase microextraction gas chromatog; Barrel storage; Gas chromatography/mass spectrometry; Japanese sake; Sherry cask; Solid phase microextraction; Tris(hydroxymethyl)aminomethane.

The combination of solid phase microextraction (SPME) and gas chromatograph-mass spectrometer (GC-MS) is frequently used for comprehensive anal. of aroma components in foods because it can be used to easily analyze volatile components, allowing saving of the amount of solvent used. In this study, SPME-GC-MS anal. of sake samples before and after sherry cask storage was performed to investigate the special flavor derived from sherry cask storage. A GC column with polyethylene glycol as the stationary phase, which is the first choice for volatile component anal., was used. However, the peak of the acid having a carbonyl group was tailed due to its bond with the hydroxyl group of the stationary phase. In the anal. of sake samples, a large and tailing peak derived from the large amount of fatty acids in Japanese sake was observed Addnl., it was not possible to analyze other co-eluting components. To overcome this problem, a novel extraction condition was examined using SPME and tris (hydroxymethyl) aminomethane (Tris). By adding Tris solution to sake, the fatty acid peak was removed successfully, thereby facilitating anal. of the peaks of compounds co-eluting with fatty acids and comprehensive anal. of the aroma components in sake. Furthermore, a comparative anal. of sake before and after storage in sherry cask showed that levels of fatty alcs., organic acid esters, fatty acid esters, and terpenes increased significantly after storage in sherry cask, suggesting that these ingredients might constitute the special flavor of sherry cask-stored sake.

Journal of Bioscience and Bioengineering published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Related Products of esters-buliding-blocks.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Wang, Hui’s team published research in Meat Science in 2022-07-31 | CAS: 123-29-5

Meat Science published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Application In Synthesis of 123-29-5.

Wang, Hui published the artcileEffect of the protease from Staphylococcus carnosus on the proteolysis, quality characteristics, and flavor development of Harbin dry sausage, Application In Synthesis of 123-29-5, the main research area is Staphylococcus carnosus protease proteolysis dry sausage quality flavor development; Flavor; Harbin dry sausage; Protease; Proteolysis; Quality characteristics; Staphylococcus carnosus.

The effect of the addition of different levels of S. carnosus protease (0, 0.15, 0.30, 0.45 and 0.60 g/kg raw meat) on the proteolysis, quality characteristics, and flavor development of Harbin dry sausage was investigated. The results showed that the S. carnosus protease addition to Harbin dry sausage effectively promoted the degradation of meat proteins into peptides and free amino acids, thus resulting in tenderization and inhibiting fat oxidation Moreover, the S. carnosus protease addition could promote the development of key flavor compounds such as some ketones, acids and esters. Sausage with S. carnosus protease levels of 0.45 g/kg exhibited the most attractive sensory attributes. Mol. docking showed that the S. carnosus protease can interact with myosin heavy chains. In summary, the S. carnosus protease addition can improve quality characteristics and flavor profile of Harbin dry sausage.

Meat Science published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Application In Synthesis of 123-29-5.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Sousa, Antonio’s team published research in Food Research International in 2020-11-30 | CAS: 123-29-5

Food Research International published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, COA of Formula: C11H22O2.

Sousa, Antonio published the artcileGeographical differentiation of apple ciders based on volatile fingerprint, COA of Formula: C11H22O2, the main research area is apple cider volatile fingerprint geog differentiation; Apple varieties (Malus domestica); Geographical regions; Markers; Volatile organic compounds.

With the globalization of food trade, its traceability and genuineness becomes increasingly more difficult. Therefore, it is necessary to develop anal. tools to define the authenticity and genuineness of food-derived products. In the current work, headspace solid-phase microextraction followed by gas chromatog.-mass spectrometry (HS-SPME/GC-MS) combined with chemometric tools was used to establish the volatile fingerprint of apple ciders produced in different geog. regions of Madeira Island, in order to define their typicity and to identify putative geog. markers. A total of 143 volatile organic compounds (VOCs) belonging to different chem. families have been identified, of which 28 were found in all apple ciders independently of geog. region. Esters, terpenic and furanic compounds presented on average a higher contribution for the total volatile fingerprint in cider produced in northern region of the Island, whereas alcs., acids, volatile phenols, carbonyl compounds and lactones in cider from southern region. Considering the relative areas of the VOCs, 43 revealed statistically significant differences (p < 0.001) between geog. regions, and 11 between northern and southern regions. A clear differentiation among cider-producing regions was observed on the developed partial least squares-discriminant anal. (PLS-DA) model. Two alcs. (1-hexanol, 1-octanol), 6 esters (Me acetate, (Z)-3-hexen-1-ol acetate, Et hexanoate, Et nonanote, Et octanoate, isoamyl octanoate) and 1 terpenic compound (limonene), can be considered putative geog. markers due to their discriminatory ability. The results obtained recognize the specific and typical geog. characteristics of the cider, which will allow the forthcoming guarantee for the construction of a sustainable platform for the establishment of the authenticity and typicality of the regional cider. Food Research International published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, COA of Formula: C11H22O2.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Zhang, Jing’s team published research in Journal of Food Science in 2021-03-31 | CAS: 123-29-5

Journal of Food Science published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Safety of Ethyl nonanoate.

Zhang, Jing published the artcileThe chemistry and sensory characteristics of new herbal tea-based kombuchas, Safety of Ethyl nonanoate, the main research area is kombucha beverage black tea volatile compound mint refreshing aroma; chrysanthemum; honeysuckle; kombucha; mint; volatiles.

Kombucha is a black tea-based, non-alc. beverage fermented by yeast and bacteria are known for its refreshing scent and taste and presents biol. characteristics, namely antioxidant, antimicrobial and anti-inflammatory activity. The present study compared traditional kombucha prepared with black tea and green tea to kombuchas produced with several alternative substrates, including white tea, chrysanthemum, honeysuckle, and mint infusions. Throughout the fermentation process, liquid and gas chromatog. analyzed sugars, ethanol, organic acids, and volatile compounds Sugar consumption was substrate-dependent, with mint kombucha having the highest amount of residual sugar and honeysuckle having the lowest. Forty-six volatile organic compounds were detected, including alcs., esters, acids, aldehydes, ketones, and other compounds Twenty-two compounds were produced during the fermentation and identified in all kombuchas; some of these compounds represented fruity and floral aromas. Another 24 compounds were substrate specific. Notably, the herb-based kombuchas (chrysanthemum, honeysuckle, and mint) contained several compounds absent in the tea-based kombuchas and are associated with minty, cooling, and refreshing aromas. Mint and green tea kombucha attained the highest and lowest overall sensorial acceptance ratings, resp. This study demonstrated herbal substrates’ suitability to prepare kombucha gastronomically with volatile compound and flavor profiles distinct from tea-based kombuchas. The kombucha beverage is a low-caloric functional drink that is increasingly popular around the world. While it is traditionally produced with black or green tea, this paper explores its production based on other herbal and floral infusions. The kombucha analogs presented in this paper can provide consumers with healthy alternatives for sugary soft drinks while also offering a broader range of flavors.

Journal of Food Science published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Safety of Ethyl nonanoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Clarke, Holly J.’s team published research in Molecules in 2020 | CAS: 123-29-5

Molecules published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Recommanded Product: Ethyl nonanoate.

Clarke, Holly J. published the artcileDietary compounds influencing the sensorial, volatile and phytochemical properties of bovine milk, Recommanded Product: Ethyl nonanoate, the main research area is bovine milk dietary compound volatile phytochem property; dairy; feeding system; isoflavones; sensory; volatile organic compounds (VOCs).

The main aim of this study was to evaluate the volatile profile, sensory perception, and phytochem. content of bovine milk produced from cows fed on three distinct feeding systems, namely grass (GRS), grass/clover (CLV), and total mixed ration (TMR). Previous studies have identified that feed type can influence the sensory perception of milk directly via the transfer of volatile aromatic compounds, or indirectly by the transfer of non-volatile substrates that act as precursors for volatile compounds In the present study, significant differences were observed in the phytochem. profile of the different feed and milk samples. The isoflavone formonoetin was significantly higher in CLV feed samples, but higher in raw GRS milk, while other smaller isoflavones, such as daidzein, genistein, and apigenin were highly correlated to raw CLV milk. This suggests that changes in isoflavone content and concentration in milk relate to diet, but also to metabolism in the rumen. This study also found unique potential volatile biomarkers in milk (di-Me sulfone) related to feeding systems, or significant differences in the concentration of others (toluene, p-cresol, Et and Me esters) based on feeding systems. TMR milk scored significantly higher for hay-like flavor and white color, while GRS and CLV milk scored significantly higher for a creamy color. Milk samples were easily distinguishable by their volatile profile based on feeding system, storage time, and pasteurization.

Molecules published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Recommanded Product: Ethyl nonanoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Tang, Ke’s team published research in Molecules in 2019 | CAS: 123-29-5

Molecules published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Category: esters-buliding-blocks.

Tang, Ke published the artcileChemical and sensory characterization of cabernet sauvignon wines from the Chinese loess plateau region, Category: esters-buliding-blocks, the main research area is cabernet sauvignon wine chem sensory profile China; Cabernet Sauvignon; GC–O; Loess Plateau; aroma; sensory profile.

In this study, the aroma profiles of Cabernet Sauvignon wines from a new grape growing region, Loess Plateau, China, were established by gas chromatog.-olfactometry, gas chromatog.-mass spectrometry and sensory anal. The sensory profiles of wines form five different young vineyards in the Loess Plateau region were obtained by descriptive anal. Blackcurrant (p < 0.01), pear and dried plum (p < 0.05), mushroom, smoked and green pepper (p < 0.1) had significant differences on the five vineyards. A total of 76 odor-active aroma compounds were identified in the wines, and 45 volatile compounds were selected as those having the greatest impact on the aroma components and these were quantitated by five different methods. In addition, the correlation model of the Loess Plateau region's sensory characteristics and aroma compounds was established by partial least squares regression (PLSR) to determine the influence of various aroma active substances on aroma attributes. Molecules published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Category: esters-buliding-blocks.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Ali, Barkat’s team published research in LWT–Food Science and Technology in 2022-01-15 | CAS: 123-29-5

LWT–Food Science and Technology published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Recommanded Product: Ethyl nonanoate.

Ali, Barkat published the artcileImpact of Soy-Cow’s mixed milk enzyme modified cheese on bread aroma, Recommanded Product: Ethyl nonanoate, the main research area is milk enzyme modified cheese bread aroma volatile compound.

The effect of spray-dried Soy-Cow’s mixed milk enzyme modified (SC-EM) cheese on wheat dough properties and bread aroma was evaluated at either 0.1, 0.5, 1.0, 1.5 or 2.0% (weight/weight). Significant accumulation of amino acids and peptides of dough were noted as SC-EM cheese levels increased. After baking a total of 118 volatile compounds (VCs) were identified in breads having aldehydes, alcs., esters and acids in major proportions. Higher contents of Maillard product 3-hydroxy-2-butanone, 2-methyl-1-propanol, phenylethyl alc., undecane, L-limonene, 2-pentyl furan and lipid oxidation compounds hexanoic acid Et ester, octanoic acid Et ester, decanoic acid Et ester, butanoic acid, hexanoic acid and octanoic acid were observed Isoamyl alc., lactic acid Et ester, Et sorbate and sorbic acid were the newly identified VCs. These results revealed that SC-EM cheese could be used as improver in dough and contribution to bread aroma. Thus, SC-EM cheese has been proposed to be included in fortified bakery products.

LWT–Food Science and Technology published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Recommanded Product: Ethyl nonanoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Abouelenein, Doaa’s team published research in Molecules in 2021 | CAS: 123-29-5

Molecules published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Formula: C11H22O2.

Abouelenein, Doaa published the artcileInfluence of Freezing and Different Drying Methods on Volatile Profiles of Strawberry and Analysis of Volatile Compounds of Strawberry Commercial Jams, Formula: C11H22O2, the main research area is freezing drying volatile compound strawberry com jam; HS-SPME/GC-MS; aroma; commercial jams; drying methods; freezing; strawberry; volatile organic compounds.

Strawberry is the most consumed berry fruit worldwide due to its unique aroma and flavor. Drying fruits to produce a powder represents one of the possible conservation methods to extend their shelf-life. The aim of the present study was to compare the influence of freezing and different drying methods on the volatile profile of strawberry using the HS-SPME/GC-MS method, in addition to anal. of strawberry jam volatiles. A total of 165 compounds were identified, accounting for 85.03-96.88% of the total volatile compositions Results and PCA showed that freezing and each drying process affected the volatile profile in a different way, and the most remarkable representative differential volatiles were Et hexanoate, hexyl acetate, (E)-2-hexenyl acetate, mesifurane, (E)-nerolidol, γ-decalactone, 1-hexanol, and acetoin. Shade air-dried, frozen, freeze-dried, and oven-dried 45°C samples retained more of the fruity and sweet aromas of strawberry, representing more than 68% of the total aroma intensity according to the literature. In contrast, the microwave-drying method showed drastic loss of fruity esters. Strawberry jams demonstrated complete destruction of esters and alcs. in most jams, while terpenes were significantly increased. These findings help better understand the aroma of strawberry and provide a guide for the effects of drying, freezing, and jam processing.

Molecules published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Formula: C11H22O2.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Zhu, Wenyou’s team published research in Food Science and Biotechnology in 2022-09-30 | CAS: 123-29-5

Food Science and Biotechnology published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Recommanded Product: Ethyl nonanoate.

Zhu, Wenyou published the artcileThe effects of an innovative pulping technique of synchronously pulping and gelatinizing treatment on raw materials properties, oenological parameters, fermentation process, and flavor characteristics of glutinous rice wine, Recommanded Product: Ethyl nonanoate, the main research area is GRM pulping gelatinizing raw material oenol parameter fermentation flavor; Gas chromatography-mass spectrometry (GC–MS); Glutinous rice wine; Liquid-state fermentation; Response surface methodology; Volatile flavor compound.

Liquid-state fermentation has been increasingly applied in the industrial glutinous rice wine (GRW) production However, products brewed by this emerging technique possess some deficiencies in flavor quality. Therefore, this study firstly developed and optimized an innovative pulping technique by the synchronously pulping and gelatinizing treatment (Process I) to improve GRW flavor quality, and then revealed the influences of Process I on raw materials properties, oenol. parameters, fermentation process, and flavor characteristics of GRW. Results show that Process I significantly (p < 0.05) enriched the soluble solid and crude protein content of glutinous rice milk by improving gelatinization degree and pulping efficiency, which consequently enhanced the microbial growth, glycolysis, and protein decomposition during the GRW fermentation process. GC-MS analyssis shows that Process I sequentially significantly (p < 0.05) enhanced the esterification and Ehrlich or Harrison pathway during the fermentation process. This contributed to a higher content of key ester and alc. compounds Food Science and Biotechnology published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Recommanded Product: Ethyl nonanoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Gao, Pei’s team published research in Journal of Food Processing and Preservation in 2020 | CAS: 123-29-5

Journal of Food Processing and Preservation published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Formula: C11H22O2.

Gao, Pei published the artcileEffects of three carp species on texture, color, and aroma properties of Suan yu, a Chinese traditional fermented fish, Formula: C11H22O2, the main research area is Suan yu fermented fish carp texture color aroma cohesion.

Effects of three carp species on texture, color, and aroma properties of Chinese traditional fermented freshwater fish (Suan yu) were investigated. Suan yu were produced from Ctenopharyngodon idella (Grass Carp, GC), Hypophthalmichthys molitrix (Silver Carp, SC), and Cyprinus carpio (Common Carp, CC) as the control. GC displayed the highest hardness and resilience, while SC showed the lowest texture except for springiness (p < .05). GC had the greatest L* and ΔE* values but the least a* value (p < .05). Esters (7), alcs. (7), acids (9), aldehydes (8), ketones (1), hydrocarbons (4), and others (5) were identified by GC-MS in all samples. E-nose anal. showed a remarkable difference in the overall aroma profile among all samples. Sensory evaluation and PCA anal. indicated that grass carp could be used as an alternative raw material for Suan yu production, which would improve the utilization of freshwater fish. Suan yu is a type of Chinese traditional fermented freshwater fish with a unique flavor, which is popular among consumers. Such products are commonly manufactured from fresh common carp (Cyprinus carpio) with long-term anaerobic fermentation Grass carp (Ctenopharyngodon idella) and silver carp (Hypophthalmichthys molitrix) are popular among consumers as major domesticated fish in China with higher annual harvests than that of common carp, which show potential as raw materials for Suan yu production It is the first time to investigate the texture, color, and aroma of Suan yu produced from the three carp species (grass carp, silver carp, and common carp) in the same process and to evaluate their quality differences and acceptability. This will help increase the sources of raw materials for Suan yu production and improve the utilization of freshwater fish. Journal of Food Processing and Preservation published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Formula: C11H22O2.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics