An update on the compound challenge: 14481-08-4

There is still a lot of research devoted to this compound(SMILES:CC(C)(C1=O[Ni+2]2(O=C(C(C)(C)C)[CH-]1)O=C([CH-]C(C(C)(C)C)=O2)C(C)(C)C)C)Product Details of 14481-08-4, and with the development of science, more effects of this compound(14481-08-4) can be discovered.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 14481-08-4, is researched, Molecular C22H38NiO4, about Addition Polymerization of Norbornene-Type Monomers Using Neutral Nickel Complexes Containing Fluorinated Aryl Ligands, the main research direction is nickel complex fluorinated aryl ligand norbornene addition polymerization catalyst.Product Details of 14481-08-4.

The strong Lewis acid B(C6F5)3 was found to activate complexes of nickel toward the polymerization of norbornene-type monomers. The active species in this reaction is created by the transfer of C6F5 from boron to nickel. As a result, a class of neutral, single-component nickel complexes was developed containing two electron-withdrawing aryl ligands that polymerize norbornene and norbornenes with functional pendant groups. Active complexes include Ni(C6F5)2(PPh2CH2C(O)Ph), (η6-toluene)Ni(C6F5)2, and Ni(2,4,6-tris(trifluoromethyl)phenyl)2(1,2-dimethoxyethane). In the case of (η6-toluene)Ni(C6F5)2, isolation and characterization of low mol. weight norbornene polymers, using ethylene, indicated that each polymer chain contained a C6F5 headgroup. This points to the initiation step as being the insertion of norbornene into the Ni-C6F5 bond. The polymer microstructure as revealed by 1H and 13C NMR spectrometry is entirely different from that produced using the cationic nickel catalyst, [(η3-crotyl)Ni(1,4-COD)]PF6. This difference in microstructure led to improved mech. properties for 80:20 copolymers of norbornene and 5-triethoxysilylnorbornene.

There is still a lot of research devoted to this compound(SMILES:CC(C)(C1=O[Ni+2]2(O=C(C(C)(C)C)[CH-]1)O=C([CH-]C(C(C)(C)C)=O2)C(C)(C)C)C)Product Details of 14481-08-4, and with the development of science, more effects of this compound(14481-08-4) can be discovered.

Reference:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics