I found the field of Chemistry very interesting. Saw the article Cerium(IV) Carboxylate Photocatalyst for Catalytic Radical Formation from Carboxylic Acids: Decarboxylative Oxygenation of Aliphatic Carboxylic Acids and Lactonization of Aromatic Carboxylic Acids published in 2020.0. COA of Formula: C13H8O2, Reprint Addresses Tsurugi, H; Mashima, K (corresponding author), Osaka Univ, Grad Sch Engn Sci, Dept Chem, Toyonaka, Osaka 5608531, Japan.; Satoh, T (corresponding author), Osaka City Univ, Grad Sch Sci, Dept Chem, Osaka 5588585, Japan.. The CAS is 2005-10-9. Through research, I have a further understanding and discovery of 6H-Benzo[c]chromen-6-one
We found that in situ generated cerium(IV) carboxylate generated by mixing the precursor Ce((OBu)-Bu-t)(4) with the corresponding carboxylic acids served as efficient photocatalysts for the direct formation of carboxyl radicals from carboxylic acids under blue light-emitting diodes (blue LEDs) irradiation and air, resulting in catalytic decarboxylative oxygenation of aliphatic carboxylic acids to give C-O bond-forming products such as aldehydes and ketones. Control experiments revealed that hexanuclear Ce(IV) carboxylate clusters initially formed in the reaction mixture and the ligand-to-metal charge transfer nature of the Ce(IV) carboxylate clusters was responsible for the high catalytic performance to transform the carboxylate ligands to the carboxyl radical. In addition, the Ce(IV) carboxylate cluster catalyzed direct lactonization of 2-isopropylbenzoic acid to produce the corresponding peroxy lactone and gamma-lactone via intramolecular 1,5-hydrogen atom transfer (1,5-HAT).
Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.. COA of Formula: C13H8O2
Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics