Application In Synthesis of Dimethyl 5-aminoisophthalate. Recently I am researching about ELECTRON-PARAMAGNETIC-RESONANCE; GAS-ADSORPTION; AEROBIC OXIDATION; CUPRIC IONS; DERIVATIVES; MIL-53; EPR; SPECTROSCOPY; BEHAVIOR; LINKER, Saw an article supported by the RFBRRussian Foundation for Basic Research (RFBR) [18-29-04013]; Ministry of Science and Higher Education (MSHE) of the Russian Federation [14, W03.31.0034]. Published in AMER CHEMICAL SOC in WASHINGTON ,Authors: Poryvaev, AS; Polyukhov, DM; Gjuzi, E; Hoffmann, F; Froba, M; Fedin, MV. The CAS is 99-27-4. Through research, I have a further understanding and discovery of Dimethyl 5-aminoisophthalate
Nanosized structural defects in metal-organic frameworks (MOFs) attract growing attention and often remarkably enhance functional properties of these materials for various applications. In this work, a series of MOFs [Cu-2(TPTA)(1-x)(BDPBTR)(x)] (H(4)TPTA, [1,1′:3′,1 ”-terphenyl]-3,3 ”,5,5 ”-tetracarboxylic acid; H4BDPBTR, 1,3-bis(3,5,dicarboxyphenyl)-1,2,4-benzotriazin-4-yl radical)) with a new stable radical linker doped into the structure has been synthesized and investigated using Electron Paramagnetic Resonance (EPR). Mixed linkers H(4)TPTA and H4BDPBTR were used to bridge copper(II) paddle-wheel units into a porous framework, where H4BDPBTR is the close structural analogue of H(4)TPTA. MOFs with various x = 0-0.4 were investigated. EPR studies indicated that the radical linker binds to the copper(II) units differently compared to diamagnetic linker, resulting in the formation of nanosized structural defects. Moreover, remarkable kinetic phenomena were observed upon cooling of this MOF, where slow structural rearrangements and concomitant changes of magnetic interactions were induced. Thus, our findings demonstrate that doping of structurally mimicking radical linkers into MOFs represents an efficient approach for designing target nanosized defects and introducing new magnetostructural functionalities for a variety of applications.
Application In Synthesis of Dimethyl 5-aminoisophthalate. Bye, fridends, I hope you can learn more about C10H11NO4, If you have any questions, you can browse other blog as well. See you lster.
Reference:
Patent; ASTRA ZENECA AB; NPS PHARMACEUTICALS, INC.; WO2004/14881; (2004); A2;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics