Quality Control of Dimethyl 5-aminoisophthalate. Authors Montes-Andres, H; Leo, P; Munoz, A; Rodriguez-Dieguez, A; Orcajo, G; Choquesillo-Lazarte, D; Martos, C; Martinez, F; Botas, JA; Calleja, G in AMER CHEMICAL SOC published article about in [Montes-Andres, Helena; Orcajo, Gisela; Martos, Carmen; Botas, Juan A.; Calleja, Guillermo] Rey Juan Carlos Univ, Dept Chem Energy & Mech Technol, Mostoles 28933, Spain; [Leo, Pedro; Munoz, Antonio; Martinez, Fernando] Rey Juan Carlos Univ, Dept Chem & Environm Technol, Mostoles 28933, Spain; [Rodriguez-Dieguez, Antonio] Univ Granada, Dept Inorgan Chem, Granada, Spain; [Choquesillo-Lazarte, Duane] Univ Granada, Lab Estudios Cristalog, CSIC, IACT, Granada 18100, Spain in 2020, Cited 66. The Name is Dimethyl 5-aminoisophthalate. Through research, I have a further understanding and discovery of 99-27-4
Herein, two novel isostructural metal-organic frameworks (MOFs) M-URJC-4 (M = Co, Ni; URJC = Universidad Rey Juan Carlos) with open metal sites, permanent microposity, and large surface areas and pore volumes have been developed. These novel MOFs, with polyhedral morphology, crystallize in the monoclinic P2(1)/c space group, exhibiting a three-dimensional structure with microporous channels along the c axis. Initially, they were fully characterized and tested in hydrogen (H-2) adsorption at different conditions of temperature and pressure. The physisorption capacities of both materials surpassed the gravimetric H-2 uptake shown by most MOF materials under the same conditions. On the basis of the outstanding adsorption properties, the Ni-URJC-4 material was used as a catalyst in a one-pot reductive amination reaction using various carbonyl compounds and primary amines. A possible chemical pathway to obtain secondary amines was proposed via imine formation, and remarkable performances were accomplished. This work evidences the dual ability of M-URJC-4 materials to be used as a H-2 adsorbent and a catalyst in reductive amination reactions, activating molecular H-2 at low pressures for the reduction of C=N double bonds and providing reference structural features for the design of new versatile heterogeneous materials for industrial application.
About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Montes-Andres, H; Leo, P; Munoz, A; Rodriguez-Dieguez, A; Orcajo, G; Choquesillo-Lazarte, D; Martos, C; Martinez, F; Botas, JA; Calleja, G or concate me.. Quality Control of Dimethyl 5-aminoisophthalate
Reference:
Patent; ASTRA ZENECA AB; NPS PHARMACEUTICALS, INC.; WO2004/14881; (2004); A2;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics