Application of 106896-49-5, The chemical industry reduces the impact on the environment during synthesis 106896-49-5, name is Methyl 4-amino-3-bromobenzoate, I believe this compound will play a more active role in future production and life.
SynthesisPeptidomimetics 37-44 were synthesized via solid phase peptide synthesis, using Suzuki couplings employing various boronic acids and aryl bromides. Intermediates display hydrophobic substituents from the aromatic spacer (Abz). The simple quinazoline scaffolds derived from commercially available starting materials. The synthesis of the quinazolines cores 45a-b was accomplished by the cyclization of 4-nitroanthranilic acid by the reaction with sodium isocyanate or cyclization employing a carbon dioxide atmosphere with catalytic DBU (1 ,8-diazabicyclo[5.4.0]undec-7-ene) from 4- and 5-nitro precursors respectively Figure 10. Alkylation was followed by reduction of the nitro group followed by coupling with A- nitrobenzoyl chloride via anilide formation to provide 48a-b. Reduction to the aniline, coupling with AcArg(Pmc)-OH, and deprotection of the guanidine protecting group afforded 50a-b.A convergent synthesis using methyl-4-amino-2-bromobenzoate or methyl-4-aminobenzoate and 4-nitroaniline created non-peptidic inhibitors 56aa-ci, as seen in Figure 13. Suzuki coupling of the bromoaniline with the corresponding boronic acid, employing PdCI2(dppf) as a catalyst, created compounds 51a followed by reductive amination utilizing N-Boc- aminoacetaldehyde produced compounds 52a-c. A series of deprotections followed by guanidinylation of the resulting amine afforded the N-terminal portions of the inhibitor 53a-c. The C-terminal hydrophobic portion of the molecule was synthesized via alkylation of A- nitroaniline with the corresponding bromide and subsequent reduction of the nitro group utilizing tin (II) chloride, producing compounds 55a-i. Coupling of compounds 53a-c and 55a- i followed by Boc deprotection under acidic conditions produced inhibitors 56aa-ci. Inhibitors64a-b were derived from a similar synthesis, but in place of the reductive amination step, 48c was reacted with Boc-Gly-OH to provide the amide intermediate compound 62 which was manipulated in a similar manner to provide inhibitors 64a-b, seen in Figure 16.The synthesis of inhibitors 57aa-fa was designed to employ a late stage Suzuki coupling to provide faster access to a number of derivatives at the R1 position, while keeping R2 as a
In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, Methyl 4-amino-3-bromobenzoate, other downstream synthetic routes, hurry up and to see.
Reference:
Patent; UNIVERSITY OF SOUTH FLORIDA; YALE UNIVERSITY; WO2008/70823; (2008); A2;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics