Sadia, Bernard Otieno et al. published their research in Journal of Nanotechnology in 2021 | CAS: 706-14-9

5-Hexyldihydrofuran-2(3H)-one (cas: 706-14-9) belongs to esters. Esters perform as high-grade solvents for a broad array of plastics, plasticizers, resins, and lacquers, and are one of the largest classes of synthetic lubricants on the commercial market. Esters contain a carbonyl center, which gives rise to 120° C–C–O and O–C–O angles. Unlike amides, esters are structurally flexible functional groups because rotation about the C–O–C bonds has a low barrier. Their flexibility and low polarity is manifested in their physical properties; they tend to be less rigid (lower melting point) and more volatile (lower boiling point) than the corresponding amides. Category: esters-buliding-blocks

Optimization, characterization, and antibacterial activity of copper nanoparticles synthesized using Senna didymobotrya root extract was written by Sadia, Bernard Otieno;Cherutoi, Jackson Kiplagat;Achisa, Cleophas Mecha. And the article was included in Journal of Nanotechnology in 2021.Category: esters-buliding-blocks This article mentions the following:

The economic burden and high mortality associated with multidrug-resistant bacteria is a major public health concern. Biosynthesized copper nanoparticles (CuNPs) could be a potential alternative to combat bacterial resistance to conventional medicine. This study for the first time aimed at optimizing the synthesis conditions (concentration of copper ions, temperature, and pH) to obtain the smallest size of CuNPs, characterizing and testing the antibacterial efficacy of CuNPs prepared from Senna didymobotrya (S. didymobotrya) roots. Extraction was done by the Soxhlet method using methanol as the solvent. Gas chromatog.-mass spectrometry (GC-MS) anal. was performed to identify compounds in S. didymobotrya root extracts Box-Behnken design was used to obtain optimal synthesis conditions as determined using a particle analyzer. Characterization was done using UV-visible (UV-Vis), particle size analyzer, X-ray diffraction, zeta potentiometer, and Fourier transform IR (FT-IR). Bioassay was conducted using the Kirby-Bauer disk diffusion susceptibility test. The major compounds identified by GC-MS in reference to the NIST library were benzoic acid, thymol, N-benzyl-2-phenethylamine, benzaldehyde, vanillin, phenylacetic acid, and benzothiazole. UV-Vis spectrum showed a characteristic peak at 570 nm indicating the formation of CuNPs. The optimum synthesis conditions were temperature of 80±C, pH 3.0, and copper ion concentration of 0.0125 M. The FT-IR spectrum showed absorptions in the range 3500-3400 cm-1 (N-H stretch), 3400-2400 cm-1 (O-H stretch), and 988-830 cm-1 (C-H bend) and peak at 1612 cm-1 (C=C stretch), and 1271 cm-1 (C-O bend). Cu nanoparticle sizes were 5.55-63.60 nm. The zeta potential value was -69.4 mV indicating that they were stable. The biosynthesized nanoparticles exhibited significant antimicrobial activity on Escherichia coli and Staphylococcus aureus with the zone of inhibition diameters of 26.00 ± 0.58 mm and 30.00 ± 0.58 mm compared to amoxicillin clavulanate (standard) with inhibition diameters of 20 ± 0.58 mm and 28.00 ± 0.58 mm, resp. In the experiment, the researchers used many compounds, for example, 5-Hexyldihydrofuran-2(3H)-one (cas: 706-14-9Category: esters-buliding-blocks).

5-Hexyldihydrofuran-2(3H)-one (cas: 706-14-9) belongs to esters. Esters perform as high-grade solvents for a broad array of plastics, plasticizers, resins, and lacquers, and are one of the largest classes of synthetic lubricants on the commercial market. Esters contain a carbonyl center, which gives rise to 120° C–C–O and O–C–O angles. Unlike amides, esters are structurally flexible functional groups because rotation about the C–O–C bonds has a low barrier. Their flexibility and low polarity is manifested in their physical properties; they tend to be less rigid (lower melting point) and more volatile (lower boiling point) than the corresponding amides. Category: esters-buliding-blocks

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics