Gao, Tianfeng published the artcileTargeting dihydrofolate reductase: Design, synthesis and biological evaluation of novel 6-substituted pyrrolo[2,3-d]pyrimidines as nonclassical antifolates and as potential antitumor agents, Related Products of esters-buliding-blocks, the publication is European Journal of Medicinal Chemistry (2019), 329-340, database is CAplus and MEDLINE.
A novel series of 6-substituted pyrrolo[2,3-d]pyrimidines with reversed amide moieties from the lead compound I (R = 4-pyridyl) were designed and synthesized as nonclassical antifolates and as potential antitumor agents. Target compounds II were successfully obtained through two sequential condensation reactions from the key intermediate 2-amino-6-(2-aminoethyl)-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one. In preliminary antiproliferation assay, all compounds demonstrated submicromolar to nanomolar inhibitory effects against KB tumor cells, whereas compounds I (R = 2-, 3-, 4-pyridyl) also exhibited nanomolar antiproliferative activities toward SW620 and A549 cells. In particular, compounds I (R = 2-, 3-, 4-pyridyl) were significantly more potent than the pos. control methotrexate (MTX) and pemetrexed (PMX) to A549 cells. The growth inhibition induced cell cycle arrest at G1-phase with S-phase suppression. Along with the results of nucleoside protection assays, inhibition assays of dihydrofolate reductase (DHFR) clearly elucidated that the intracellular target of the designed compounds was DHFR. Mol. modeling studies suggested two binding modes of the target compounds with DHFR.
European Journal of Medicinal Chemistry published new progress about 1877-71-0. 1877-71-0 belongs to esters-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Ester, name is 3-(Methoxycarbonyl)benzoic acid, and the molecular formula is C9H8O4, Related Products of esters-buliding-blocks.
Referemce:
https://en.wikipedia.org/wiki/Ester,
Ester – an overview | ScienceDirect Topics