Ochiai, Nobuo published the artcileFractionated stir bar sorptive extraction using conventional and solvent-assisted approaches for enhanced identification capabilities of aroma compounds in beverages, HPLC of Formula: 5405-41-4, the main research area is stir bar sorptive extraction aroma beverages green tea beer; Aroma compounds; Fractionated stir bar sorptive extraction (Fr-SBSE); Roasted green tea; Solvent-assisted stir bar sorptive extraction (SA-SBSE); Stout beer.
For successful profiling of aroma carriers in food samples, a highly efficient extraction method is mandatory. A two-step stir bar sorptive extraction (SBSE) approach, namely fractionated SBSE (Fr-SBSE), was developed to improve both the organoleptic and the chem. identification of aroma compounds in beverages. The first extraction consists of a conventional mSBSE using three polydimethylsiloxane (PDMS) stir bars (1stmSBSE). This is followed by a solvent-assisted mSBSE performed on the same sample using three solvent-swollen PDMS stir bars (2nd SA-mSBSE). The 1stmSBSE mainly extracts apolar/medium polar solutes with log Kow values >2, while the 2nd SA-mSBSE mainly extracts polar solutes with log Kow values <2. After this two-step fractionation procedure, either thermal desorption (TD) or liquid desorption - large volume injection (LD-LVI), followed by GC-MS is performed on each set of three stir bars. A real-life sample of roasted green tea was used for method development. The performance of the Fr-SBSE method is further illustrated with sensory evaluations and GC-MS anal. for a stout beer sample. Compared to an extraction procedure with SA-mSBSE only, Fr-SBSE including a 1stmSBSE and a 2nd SA-mSBSE reduced co-elution of aroma compounds in the chromatograms and was capable of providing improved mass spectral quality for identification of 17 addnl. compounds in roasted green tea, and 12 addnl. compounds in stout beer, resp. Moreover, odor description and characterization were clearly improved. Journal of Chromatography A published new progress about Beverages. 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, HPLC of Formula: 5405-41-4.
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics