Lin, Xue’s team published research in Food Science and Biotechnology in 2019-06-30 | CAS: 5405-41-4

Food Science and Biotechnology published new progress about Alcohols Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Category: esters-buliding-blocks.

Lin, Xue published the artcileEvaluation of the volatile profile of wax apple (Syzygium samarangense) wines fermented with different commercial Saccharomyces cerevisiae strains, Category: esters-buliding-blocks, the main research area is Saccharomyces Syzygium wine fermentation volatile profile; Fermentation; Fruit wine; Saccharomyces cerevisiae; Volatile compound; Wax apple.

The effect of four com. Saccharomyces cerevisiae strains (D254, VIC, BV818, and RV100) on the volatile profile of wax apple (Syzygium samarangense) wine was investigated in this study. Alcs. and esters were the most two abundant groups of identified volatiles in wax apple wines. However, different S. cerevisiae strains possess various capacities in releasing/synthesizing volatiles with varied mRNA levels of genes involved in volatiles metabolism during wax apple wine fermentation VIC, which yielded the highest total concentration of volatiles and largest number of volatiles with odor activity value (OAV) > 1, could be used as a starter culture to produce wax apple wine characterized with intense aroma. D254 and RV100, which produced the greatest variety of volatiles and scored the highest in global aroma, resp., could be used to enhance the wine complexity. Four wax apple wines could be differentiated by their main volatile compounds

Food Science and Biotechnology published new progress about Alcohols Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Category: esters-buliding-blocks.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics