Jia, Shuangzhu; Li, Changan; Pan, Hongyan; Wang, Meng; Wang, Xianshu; Lin, Qian published the artcile< Preparation and pore-forming mechanism of hydrogen bond and ionic bond double-driven chitosan-based mesoporous carbon>, Electric Literature of 112-63-0, the main research area is chitosan based mesoporous carbon preparation hydrogen ionic bond adsorption; Chitosan; Hydrogen bond and ionic bond; Mesoporous carbon; Sol-hydrothermal method; Synergistic preparation; Tannic acid.
Using chitosan as the carbon source, F127 as the template, and sodium tripolyphosphate as crosslinking agent, a hydrogen bond and ionic bond double-driven mesoporous carbon material was prepared via the sol-hydrothermal method and its formation mechanism was discussed. According to the results from FTIR, Raman, XPS, phys. adsorption analyzer, SEM, TEM, and TG-IR, the mesoporous carbon material was formed under the synergistic effect of hydrogen bond and ionic bond has a mesoporous volume of 0.44 cm3/g, a BET surface area of 262 m2/g, and possesses the ideal unimodal distribution around 2.20 nm. The mesopores are originated from the degradation of hydrophobic segment PPO of F127, and the micropores come from the gases CO2, CO, NH3, CH4, tetraethylene glycol di-Me ether, and 2,6-diisopropylphenyl isocyanate produced during the degradation of prepolymers. The maximum adsorption capacity of this mesoporous carbon for tannic acid (Sips model) at 30 鎺矯 is 70.4 mg/g.
International Journal of Biological Macromolecules published new progress about Adsorption. 112-63-0 belongs to class esters-buliding-blocks, and the molecular formula is C19H34O2, Electric Literature of 112-63-0.
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics