The origin of a common compound about 6279-86-3

According to the analysis of related databases, 6279-86-3, the application of this compound in the production field has become more and more popular.

Synthetic Route of 6279-86-3, In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 6279-86-3 as follows.

Put 300 ml methylbenzene and 60% sodium hydride 3.3g (0.0825 mol) into the 500 ml four-neck flask with reflux condenser pipe, dropping pipette, stirrer and thermometric instrument which is protected by dry nitrogen; and then add 19.3g (0.083 mol) methane tricarboxylic acid triethyl ester into the flask at the temperature of below 80C and protected for 2h by heat preservation; add 33.3g (0.075 mol) bromine sulfonium salts into the flask and then raise the temperature and control the temperature of the entire flask at 80C for a 15h reaction; cool it to the normal temperature and use 5% sulfuric acid to adjust the pH to pH=3; separate the organic layer and extract the water layer by 100 ml methylbenzene for two times; use 40 ml 5% sodium bicarbonate water solution wash the organic layer for two times; dry the oil layer by anhydrous sodium sulfate, filtrate and reduce pressure to recycle faint yellow fluid, finally get the target object-2.5g tri-ester dibenzyl biotin (95.5% of the theoretical value), and the HPLC measured content is 97.8% with no impurity 5 (hereinafter to be referred as dicarboxylic ester)

According to the analysis of related databases, 6279-86-3, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Zhejiang Medicine Co., Ltd.; EP2433942; (2012); A1;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics