Panduwawala, Tharindi D. et al. published their research in Organic & Biomolecular Chemistry in 2019 | CAS: 4163-60-4

(2S,3R,4S,5S,6R)-6-(Acetoxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate (cas: 4163-60-4) belongs to esters. Esters are also usually derived from carboxylic acids. It may also be obtained by reaction of acid anhydride or acid halides with alcohols or by the reaction of salts of carboxylic acids with alkyl halides. Acyl chlorides and acid anhydrides alcoholysis is another way to produce esters. Acyl chlorides and acid anhydrides react with alcohols to produce esters. Anydrous conditions are recommended since both acyl chlorides and acid anhydrides react with water.COA of Formula: C16H22O11

Functionalized bicyclic tetramates derived from cysteine as antibacterial agents was written by Panduwawala, Tharindi D.;Iqbal, Sarosh;Thompson, Amber L.;Genov, Miroslav;Pretsch, Alexander;Pretsch, Dagmar;Liu, Shuang;Ebright, Richard H.;Howells, Alison;Maxwell, Anthony;Moloney, Mark G.. And the article was included in Organic & Biomolecular Chemistry in 2019.COA of Formula: C16H22O11 This article mentions the following:

Routes to bicyclic tetramates derived from cysteine permitting ready incorporation of functionality at two different points around the periphery of a heterocyclic skeleton are reported. This has enabled the identification of systems active against Gram-pos. bacteria, some of which show gyrase and RNA polymerase inhibitory activity. In particular, tetramates substituted with glycosyl side chains, chosen to impart polarity and aqueous solubility, show high antibacterial activity coupled with modest gyrase/polymerase activity in two cases. An anal. of physicochem. properties indicates that the antibacterially active tetramates generally occupy physicochem. space with MW of 300-600, clog D7.4 of -2.5 to 4 and rel. PSA of 11-22%. This work demonstrates that biol. active 3D libraries are readily available by manipulation of a tetramate skeleton. In the experiment, the researchers used many compounds, for example, (2S,3R,4S,5S,6R)-6-(Acetoxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate (cas: 4163-60-4COA of Formula: C16H22O11).

(2S,3R,4S,5S,6R)-6-(Acetoxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate (cas: 4163-60-4) belongs to esters. Esters are also usually derived from carboxylic acids. It may also be obtained by reaction of acid anhydride or acid halides with alcohols or by the reaction of salts of carboxylic acids with alkyl halides. Acyl chlorides and acid anhydrides alcoholysis is another way to produce esters. Acyl chlorides and acid anhydrides react with alcohols to produce esters. Anydrous conditions are recommended since both acyl chlorides and acid anhydrides react with water.COA of Formula: C16H22O11

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Kamaraj, Yoganathan et al. published their research in Archives of Microbiology in 2022 | CAS: 84-61-7

Dicyclohexyl phthalate (cas: 84-61-7) belongs to esters. Volatile esters with characteristic odours are used in synthetic flavours, perfumes, and cosmetics. Certain volatile esters are used as solvents for lacquers, paints, and varnishes. Esters contain a carbonyl center, which gives rise to 120° C–C–O and O–C–O angles. Unlike amides, esters are structurally flexible functional groups because rotation about the C–O–C bonds has a low barrier. Their flexibility and low polarity is manifested in their physical properties; they tend to be less rigid (lower melting point) and more volatile (lower boiling point) than the corresponding amides. Electric Literature of C20H26O4

Biodegradation of di-(2-ethylhexyl) phthalate by novel Rhodococcus sp. PFS1 strain isolated from paddy field soil was written by Kamaraj, Yoganathan;Jayathandar, Rajesh Singh;Dhayalan, Sangeetha;Subramaniyan, Satheeshkumar;Punamalai, Ganesh. And the article was included in Archives of Microbiology in 2022.Electric Literature of C20H26O4 This article mentions the following:

Di-(2-ethylhexyl)-phthalate (DEHP) is the phthalate ester frequently utilized as a plasticizer, commonly found in cosmetics, packaging materials; moreover, it has carcinogenic and mutagenic effects on humans. In the current study, we isolated the soil bacterium Rhodococcus sp. PFS1 and to assess its DEHP degradation ability in various environmental conditions. The strain PFS1 was isolated from paddy field soil and identified by the 16S rRNA sequencing analyses. The strain PFS1 was examined for its biodegradation ability of DEHP at various pH, temperature, salt concentration, glucose concentration, and high and low concentrations of DEHP. Moreover, the biodegradation of DEHP at a contaminated soil environment by strain PFS1 was assessed. Further, the metabolic pathway of DEHP degradation by PFS1 was analyzed by HPLC-MS anal. The results showed that the strain PFS1 effectively degraded the DEHP at neutral pH and temperature 30°C; moreover, expressed excellent DEHP degradation at the high salt concentration (up to 50 g/L). The strain PFS1 was efficiently degraded the different tested phthalate esters (PAEs) up to 90%, significantly removed the DEHP contamination in soil along with native organisms which are present in soil up to 94.66%; nevertheless, the PFS1 alone degraded the DEHP up to 87.665% in sterilized soil. According to HPLC-MS anal., DEHP was degraded into phthalate (PA) by PFS1 strain via mono(2-ethylehxyl) phthalate (MEHP); then PA was utilized for cell growth. These results suggest that Rhodococcus sp. PFS1 has excellent potential to degrade DEHP at various environmental conditions especially in contaminated paddy field soil. In the experiment, the researchers used many compounds, for example, Dicyclohexyl phthalate (cas: 84-61-7Electric Literature of C20H26O4).

Dicyclohexyl phthalate (cas: 84-61-7) belongs to esters. Volatile esters with characteristic odours are used in synthetic flavours, perfumes, and cosmetics. Certain volatile esters are used as solvents for lacquers, paints, and varnishes. Esters contain a carbonyl center, which gives rise to 120° C–C–O and O–C–O angles. Unlike amides, esters are structurally flexible functional groups because rotation about the C–O–C bonds has a low barrier. Their flexibility and low polarity is manifested in their physical properties; they tend to be less rigid (lower melting point) and more volatile (lower boiling point) than the corresponding amides. Electric Literature of C20H26O4

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics