Alkhodairi, Husam et al. published their research in Macromolecules (Washington, DC, United States) in 2022 | CAS: 6683-19-8

2,2-Bis(((3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoyl)oxy)methyl)propane-1,3-diyl bis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate) (cas: 6683-19-8) belongs to esters. Esters are widespread in nature and are widely used in industry. In nature, fats are in general triesters derived from glycerol and fatty acids. Esters are responsible for the aroma of many fruits, including apples, durians, pears, bananas, pineapples, and strawberries. Liquid esters of low volatility serve as softening agents for resins and plastics. Esters also include many industrially important polymers. Polymethyl methacrylate is a glass substitute sold under the names Lucite and Plexiglas; polyethylene terephthalate is used as a film (Mylar) and as textile fibres sold as Terylene, Fortrel, and Dacron.Electric Literature of C73H108O12

Fracture Toughness of Polymer Interfaces Compatibilized with Nanoparticle Brushes was written by Alkhodairi, Husam;Kumar, Sanat K.. And the article was included in Macromolecules (Washington, DC, United States) in 2022.Electric Literature of C73H108O12 This article mentions the following:

Surface-active particles at immiscible polymer/polymer interfaces can provide unparalleled stability against droplet coalescence. However, they often deteriorate the fracture toughness (Gc) of the interface because their rigid cores act as stress concentrators. Here, we draw on the knowledge developed for the interfacial strengthening mechanisms of block and random copolymers to design analogous particle-based systems. We use silica nanoparticles “grafted-from” with poly(styrene-r-Me methacrylate) (PS-r-PMMA) chains to strengthen PS/PMMA interfaces. In this manner, the silica cores suppress droplet coalescence, while the PS-r-PMMA grafts entangle with the homopolymers and transmit stress across the interface. Interestingly, we show that Gc for the interfaces compatibilized with these particle brushes can exceed that of the interfaces compatibilized with ungrafted copolymer analogs. Rheol. experiments attribute this phenomenon to increased connectivity between the entanglement points in these hybrid particle brush systems. In the experiment, the researchers used many compounds, for example, 2,2-Bis(((3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoyl)oxy)methyl)propane-1,3-diyl bis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate) (cas: 6683-19-8Electric Literature of C73H108O12).

2,2-Bis(((3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoyl)oxy)methyl)propane-1,3-diyl bis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate) (cas: 6683-19-8) belongs to esters. Esters are widespread in nature and are widely used in industry. In nature, fats are in general triesters derived from glycerol and fatty acids. Esters are responsible for the aroma of many fruits, including apples, durians, pears, bananas, pineapples, and strawberries. Liquid esters of low volatility serve as softening agents for resins and plastics. Esters also include many industrially important polymers. Polymethyl methacrylate is a glass substitute sold under the names Lucite and Plexiglas; polyethylene terephthalate is used as a film (Mylar) and as textile fibres sold as Terylene, Fortrel, and Dacron.Electric Literature of C73H108O12

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics