Simple Formation of an Abiotic Porphyrinogen in Aqueous Solution was written by Lindsey, Jonathan S.;Ptaszek, Marcin;Taniguchi, Masahiko. And the article was included in Origins of Life and Evolution of Biospheres in 2009.Name: Ethyl 4-methyl-1H-pyrrole-3-carboxylate This article mentions the following:
Porphyrins have long been proposed as key ingredients in the emergence of life yet plausible routes for forming their essential pyrrole precursor have heretofore not been identified. Here we show that the anaerobic reaction of δ-aminolevulinic acid (ALA, 1-5 mM) with the β-ketoester Me 4-methoxyacetoacetate (2-40 mM) in water (pH 5-7) at 70-100° for >6 h affords the porphyrinogen, which upon chem. oxidation gives the corresponding porphyrin in overall yield of up to 10%. The key intermediate is the α-methoxymethyl-substituted pyrrole, which undergoes tetramerization and macrocycle formation under kinetic control. The resulting type-I porphyrin bears four propionic acid and four carbomethoxy groups, is distinct from porphyrins (e.g., uroporphyrin or coproporphyrin) derivable from ALA alone via the extant universal biosynthetic path to tetrapyrroles, and is photoactive upon assembly into cationic micelles in aqueous solution The simple self-organization of eight acyclic mols. into a tetrapyrrole macrocycle, from which a porphyrin is derived that is photoactive in lipid assemblies, augurs well for the spontaneous origin of catalysts and pigments essential for prebiotic metabolism and proto-photosynthesis. In the experiment, the researchers used many compounds, for example, Ethyl 4-methyl-1H-pyrrole-3-carboxylate (cas: 2199-49-7Name: Ethyl 4-methyl-1H-pyrrole-3-carboxylate).
Ethyl 4-methyl-1H-pyrrole-3-carboxylate (cas: 2199-49-7) belongs to esters. Esters are widespread in nature and are widely used in industry. In nature, fats are in general triesters derived from glycerol and fatty acids. Esters are responsible for the aroma of many fruits, including apples, durians, pears, bananas, pineapples, and strawberries. Because of their lack of hydrogen-bond-donating ability, esters do not self-associate. Consequently, esters are more volatile than carboxylic acids of similar molecular weight.Name: Ethyl 4-methyl-1H-pyrrole-3-carboxylate
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics