Li, Youqiang’s team published research in Soft Matter in 2021 | CAS: 142-90-5

Soft Matter published new progress about Compressive strength. 142-90-5 belongs to class esters-buliding-blocks, name is Dodecyl 2-methylacrylate, and the molecular formula is C16H30O2, Category: esters-buliding-blocks.

Li, Youqiang published the artcileA highly sensitive strain sensor based on a silica@polyaniline core-shell particle reinforced hydrogel with excellent flexibility, stretchability, toughness and conductivity, Category: esters-buliding-blocks, the main research area is polyaniline silica core shell particle reinforced hydrogel strain sensor.

Hydrogel-based flexible strain sensors for personal health monitoring and human-machine interaction have attracted wide interest among researchers. In this paper, hydrophobic association and nanocomposite conductive hydrogels were successfully prepared by introducing polyaniline coated silica (SiO2@PANI) core-shell particles into an acrylamide-lauryl methacrylate (P(AM/LMA)) copolymer matrix. The hydrophobic interaction between the SiO2@PANI core-shell particles and the hydrophobic LMA in the P(AM/LMA) chains induced the hydrogels with outstanding mech. properties. Furthermore, the polyaniline on the SiO2 surface and the inorganic salt formed a conductive network, which synergistically enhanced the conductivity of the hydrogels. The obtained hydrogels integrate high tensile strength (1398 kPa), ultra-stretchability (>1000%), wonderful strain sensitivity (gauge factor = 10.407 at 100-1100% strain), quick response (300 ms), and excellent durability (>300 cycles) due to the hydrophobic association and nanocomposite effect. The prepared SiO2@PANI-P(AM/LMA) hydrogel shows high stress sensitivity to detect human movements and displays a broad application prospect in flexible strain-sensor field.

Soft Matter published new progress about Compressive strength. 142-90-5 belongs to class esters-buliding-blocks, name is Dodecyl 2-methylacrylate, and the molecular formula is C16H30O2, Category: esters-buliding-blocks.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics