Krishnamoorthi, M. published the artcileExperimental, numerical and exergy analyses of a dual fuel combustion engine fuelled with syngas and biodiesel/diesel blends, HPLC of Formula: 929-77-1, the main research area is syngas biodiesel diesel combustion engine exergy simulation modeling.
This work investigates the effects of addition of syngas and biodiesel on a reactivity controlled compression ignition (RCCI) engine fuelled with diesel. SEM (SEM) of exhaust particulate matter has been done to obtain particulate matter (PM) morphol. Energy and exergy analyses have been performed to observe energy and availability shares, and to provide directions for the energy recovery systems. Closed cycle combustion simulations have been performed to complement the exptl. results and for an improved understanding of in-cylinder dynamics. Based on the initial study, used cooking oil based biodiesel blend (B20, 20% biodiesel) has been chosen in experiments The optimal operating conditions for syngas/diesel and syngas/B20 in RCCI mode for different operating parameters have been investigated. Injection pressure, injection timing and pre-injection mass ratio have been modified to get improved combustion efficiency at mid-load. Syngas/diesel mode with an injection timing of 19° before top dead center (bTDC) shows slightly higher brake thermal efficiency (BTE) with 22% and 77% lower oxides of nitrogen (NOx) and PM resp. as compared to conventional diesel combustion. In syngas/B20 mode, a maximum BTE of 24% has been observed for the case with a pre-injection at 50° bTDC with 30% mass fraction and 18° bTDC main injection timing. Syngas/diesel shows a reduction in primary soot particle count by about 67% and contains larger aggregates as compared to neat diesel.
Applied Energy published new progress about Aggregates. 929-77-1 belongs to class esters-buliding-blocks, name is Methyl docosanoate, and the molecular formula is C23H46O2, HPLC of Formula: 929-77-1.
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics