Ramsey, Imogen published the artcileAssessing the sensory and physicochemical impact of reverse osmosis membrane technology to dealcoholize two different beer styles, Application In Synthesis of 110-42-9, the main research area is beer dealcoholization sensory physicochem impact reverse osmosis membrane technol; Dealcoholization; Non-alcoholic beer; Physicochemical; Reverse osmosis; Sensory.
A pilot scale dealcoholisation unit fitted with reverse osmosis (RO) membranes was used to directly compare two beer matrixes (stout, lager, ∼ 5% ABV) and their dealcoholized counterparts (∼0.5% ABV), for physicochem. properties (volatiles, pH, ABV, polyphenols, bitterness) and sensory profiles using a trained descriptive panel (n = 12). The efficiency and consistency of RO membranes were evaluated by replicate dealcoholisation trials (n = 3) for each beer. Statistical anal. revealed significant reductions (p < 0.05) in key volatile compounds with linear structures (Et octanoate, octan-1-ol) compared to those with increased levels of branching (3-methylbutyl acetate, 2-methylpropan-1-ol). Significant reductions (p < 0.0001) in fruity/estery, alc./solvent, malty, sweetness and body sensory attributes were also discovered. Finally, longer processing times for the stout across replicate trials suggested membrane clogging, while differences in volatile reduction suggested membrane fouling. This novel research proposes compound structure, rather than compound size, impacts RO membrane permeability and resulting sensory quality. Food Chemistry: X published new progress about Beer. 110-42-9 belongs to class esters-buliding-blocks, name is Methyl decanoate, and the molecular formula is C11H22O2, Application In Synthesis of 110-42-9.
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics