Zhao, Kangyu’s team published research in Frontiers in Chemistry (Lausanne, Switzerland) in 2022 | CAS: 539-88-8

Frontiers in Chemistry (Lausanne, Switzerland) published new progress about Alcoholysis. 539-88-8 belongs to class esters-buliding-blocks, name is Ethyl 4-oxopentanoate, and the molecular formula is C7H12O3, Related Products of esters-buliding-blocks.

Zhao, Kangyu published the artcileHighly efficient one-step conversion of fructose to biofuel 5-ethoxymethylfurfural using a UIO-66-SO3H catalyst, Related Products of esters-buliding-blocks, the main research area is fructose biofuel ethoxymethylfurfural sulfonic acid functionalized UIO MOF catalyst; 5-ethoxymethylfurfural; biomass; catalysis; fructose; one-step conversion.

In this study, a novel sulfonic acid-modified catalyst for MOFs (UIO-66-SO3H) was synthesized using chlorosulfonic acid as a sulfonating reagent and first used as efficient heterogeneous catalysts for the one-pot conversion of fructose into biofuel 5-ethoxymethylfurfural (EMF) in a cosolventfree system. The physicochem. properties of this catalyst were characterized by Fourier transform IR spectroscopy (FT-IR), transmission electron microscopy (TEM), and powder X-ray diffraction (XRD). The characterization demonstrated that the sulfonic acid group was successfully grafted onto the MOF material and did not cause significant changes to its morphol. and structure. Furthermore, the effects of catalyst acid amount, reaction temperature, reaction time, and catalyst dosage on reaction results were investigated. The results showed that the conversion of fructose was 99.7% within 1 h at 140°C, while the EMF yield reached 80.4%. This work provides a viable strategy by application of sulfonic acid-based MOFs for the efficient synthesis of potential liquid fuel EMF from renewable biomass.

Frontiers in Chemistry (Lausanne, Switzerland) published new progress about Alcoholysis. 539-88-8 belongs to class esters-buliding-blocks, name is Ethyl 4-oxopentanoate, and the molecular formula is C7H12O3, Related Products of esters-buliding-blocks.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics