Ghahremani, Milad published the artcileA Theoretical Analysis on a Multi-Bed Pervaporation Membrane Reactor during Levulinic Acid Esterification Using the Computational Fluid Dynamic Method, SDS of cas: 539-88-8, the main research area is multi bed pervaporation membrane reactor levulinic acid esterification; computational fluid dynamic method; computational fluid dynamic (CFD) method; esterification process; modeling and simulation; pervaporation membrane reactor.
Pervaporation is a peculiar membrane separation process, which is considered for integration with a variety of reactions in promising new applications. Pervaporation membrane reactors have some specific uses in sustainable chem., such as the esterification processes. This theor. study based on the computational fluid dynamics method aims to evaluate the performance of a multi-bed pervaporation membrane reactor (including poly (vinyl alc.) membrane) to produce Et levulinate as a significant fuel additive, coming from the esterification of levulinic acid. For comparison, an equivalent multi-bed traditional reactor is also studied at the same operating conditions of the aforementioned pervaporation membrane reactor. A computational fluid dynamics model was developed and validated by exptl. literature data. The effects of reaction temperature, catalyst loading, feed molar ratio, and feed flow rate on the reactor’s performance in terms of levulinic acid conversion and water removal were hence studied. The simulations indicated that the multi-bed pervaporation membrane reactor results to be the best solution over the multi-bed traditional reactor, presenting the best simulation results at 343 K, 2 bar, catalyst loading 8.6 g, feed flow rate 7 mm3/s, and feed molar ratio 3 with levulinic acid conversion equal to 95.3% and 91.1% water removal.
Membranes (Basel, Switzerland) published new progress about Catalysts. 539-88-8 belongs to class esters-buliding-blocks, name is Ethyl 4-oxopentanoate, and the molecular formula is C7H12O3, SDS of cas: 539-88-8.
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics