Mostofa, Mohammad Golam published the artcileStrigolactones regulate arsenate uptake, vacuolar-sequestration and antioxidant defense responses to resist arsenic toxicity in rice roots, Recommanded Product: 2′,7′-Dichloro-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-3′,6′-diyl diacetate, the main research area is strigolactone antioxidant defense response arsenic toxicity rice root; Arsenic toxicity; Glutathione metabolism; Oxidative stress; Phosphate transporters; Rice; Strigolactones.
We explored genetic evidence for strigolactonesâ?role in rice tolerance to arsenate-stress. Comparative analyses of roots of wild-type (WT) and strigolactone-deficient mutants d10 and d17 in response to sodium arsenate (Na2AsO4) revealed differential growth inhibition [WT (11.28%) vs. d10 (19.76%) and d17 (18.03%)], biomass reduction [(WT (33.65%) vs. d10 (74.86%) and d17 (60.65%)] and membrane damage (WT < d10 and d17) at 250 μM Na2AsO4. Microscopic and biochem. analyses showed that roots of WT accumulated lower levels of arsenic and oxidative stress indicators like reactive oxygen species and malondialdehyde than those of strigolactone-deficient mutants. qRT-PCR data indicated lower expression levels of genes (OsPT1, OsPT2, OsPT4 and OsPT8) encoding phosphate-transporters in WT roots than mutant roots, explaining the decreased arsenate and phosphate uptake by WT roots. Increased levels of glutathione and OsPCS1 and OsABCC1 transcripts indicated an efficient vacuolar-sequestration of arsenic in WT roots. Furthermore, higher activities (transcript levels) of SOD (OsCuZnSOD1 and OsCuZnSOD2), APX (OsAPX1 and OsAPX2) and CAT (OsCATA) corresponded to lower oxidative damage in WT roots compared with strigolactone-mutant roots. Collectively, these results highlight that strigolactones are involved in arsenic-stress mitigation by regulating arsenate-uptake, glutathione-biosynthesis, vacuolar-sequestration of arsenic and antioxidant defense responses in rice roots. Journal of Hazardous Materials published new progress about Antioxidants. 2044-85-1 belongs to class esters-buliding-blocks, name is 2',7'-Dichloro-3-oxo-3H-spiro[isobenzofuran-1,9'-xanthene]-3',6'-diyl diacetate, and the molecular formula is C24H14Cl2O7, Recommanded Product: 2′,7′-Dichloro-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-3′,6′-diyl diacetate.
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics