Han, K. published the artcileEffect of the different baking processes on the aroma profiles of Shanxi aged vinegar mashes, HPLC of Formula: 106-32-1, the main research area is Shanxi aged vinegar mash aroma baking process.
As one of the typical appreciated seasonings, Shanxi aged vinegar is famous all over the world for its unique aroma formed during the baking stage. To evaluate the influence of two baking methods on the aroma profiles, headspace solid-phase microextraction (HS-SPME) in combination with gas chromatog.-mass spectrometry (GC-MS) were carried out, and the odor intensity was evaluated by odor activity values. Results showed that there were 72 volatile compounds that could be identified and quantified in the analyzed samples. Moreover, among them, the odor activity values (OAV) of 35 compounds were ≥ 1, and the contents of acetic acid, Et acetate, and acetoin were significantly higher than the other volatile compounds There were 17 odor-active compounds newly produced after baking stage. Based on the principle components anal. (PCA), 11 newly produced volatile compounds as well as benzeneacetaldehyde and furfural, of which the OAVs had remarkable differences in two baking methods, were closely associated with the baking process. Addnl., acetophenone was formed specifically in the traditional methods, and five odor-active compounds (3-methylbutyl-acetate, hexanal, 2,3-dimethyl-5-ethylpyrazine, trimethyloxazole, and di-Me disulfide) were detected only in the modern method. In conclusion, baking process has important influence on the formation and composition ratio of aroma profiles in Shanxi aged vinegar. The results obtained from the present work might provide guidance for improvement of the production process and quality optimization of Shanxi aged vinegar.
International Food Research Journal published new progress about Alcohols Role: ANT (Analyte), FFD (Food or Feed Use), ANST (Analytical Study), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, HPLC of Formula: 106-32-1.
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics