Trinderup, Helle H. et al. published their research in European Journal of Organic Chemistry in 2021 | CAS: 604-69-3

(2S,3R,4S,5R,6R)-6-(Acetoxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate (cas: 604-69-3) belongs to esters. Esters are widespread in nature and are widely used in industry. In nature, fats are in general triesters derived from glycerol and fatty acids. Esters are responsible for the aroma of many fruits. Because of their lack of hydrogen-bond-donating ability, esters do not self-associate. Consequently, esters are more volatile than carboxylic acids of similar molecular weight.Recommanded Product: 604-69-3

How do Various Reaction Parameters Influence Anomeric Selectivity in Chemical Glycosylation with Thioglycosides and NIS/TfOH Activation? was written by Trinderup, Helle H.;Andersen, Sofie M.;Heuckendorff, Mads;Jensen, Henrik H.. And the article was included in European Journal of Organic Chemistry in 2021.Recommanded Product: 604-69-3 The following contents are mentioned in the article:

The reaction of glycosyl donor Ph 2,3,4,6-tetra-O-benzyl-1-thio-β-D-glucopyranoside with NIS/TfOH(cat.) was systematically studied under various reaction conditions. Neither the mol. sieve pore size nor amount of NIS activator was found to have an effect on the α/β-ratio in the reaction with L-menthol as glycosyl acceptor. Increasing concentration and the amount of triflic acid catalyst, however was found to increase the β-selectivity in certain cases. Moreover, lowering temperature was found to have a strong effect on the glycosylation outcome. This study involved multiple reactions and reactants, such as (2S,3R,4S,5R,6R)-6-(Acetoxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate (cas: 604-69-3Recommanded Product: 604-69-3).

(2S,3R,4S,5R,6R)-6-(Acetoxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate (cas: 604-69-3) belongs to esters. Esters are widespread in nature and are widely used in industry. In nature, fats are in general triesters derived from glycerol and fatty acids. Esters are responsible for the aroma of many fruits. Because of their lack of hydrogen-bond-donating ability, esters do not self-associate. Consequently, esters are more volatile than carboxylic acids of similar molecular weight.Recommanded Product: 604-69-3

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics