Lin, Jui-Teng published the artcileEfficacy modeling of new multi-functional benzophenone-based system for free-radical/cationic hybrid-photopolymerization using 405 nm LED, Synthetic Route of 10287-53-3, the publication is Journal of Polymer Research (2022), 29(3), 100, database is CAplus.
This article presents, for the first time, the kinetics and the general conversion features of a 3-component system, benzophenone-triphenylamine(BT)/iodonium/Amine, based on proposed mechanism of Liu et al., for both free radical polymerization (FRP) of acrylates and the free radical promoted cationic polymerization (CP) of epoxides using the new multi-functional initiator of BT. The additives, iodonium and amine, Et 4-(dimethylamino)benzoate (EDB), have the dual function of (i) regeneration BT and (ii) produce of extra radicals for improved FRP and CP. Analytic formulas are developed to explore the new features including: (i) the conversion efficacy (CE) of FRP is an increasing function of the light intensity, the effective absorption coefficient, and the concentration sum of each of the components, BT, Iod, amine, for transient state. However, CE at steady-state is independent to the light intensity; (ii) the trifunctional hybrid structures of BT3 leads to larger light absorption than other types of BT; it also provides more active sites for the H-abstraction in the presence of EDB, leading to high CE; (iii) the efficacy of FRP is an increasing function of the amine (EDB) concentration, in contrast to that of CP having an opposite dependence; (iv) the consumption rate of BT3 in the BT3/Iod/EDB system is slower than that of the BT3/Iod system due to photoredox catalytic cycle, and the larger initiator regeneration (RGE)in the three-component system.
Journal of Polymer Research published new progress about 10287-53-3. 10287-53-3 belongs to esters-buliding-blocks, auxiliary class Amine,Benzene,Ester, name is Ethyl 4-dimethylaminobenzoate, and the molecular formula is C11H15NO2, Synthetic Route of 10287-53-3.
Referemce:
https://en.wikipedia.org/wiki/Ester,
Ester – an overview | ScienceDirect Topics