Membrane mediated toppling mechanism of the folate energy coupling factor transporter was written by Faustino, Ignacio;Abdizadeh, Haleh;Souza, Paulo C. T.;Jeucken, Aike;Stanek, Weronika K.;Guskov, Albert;Slotboom, Dirk J.;Marrink, Siewert J.. And the article was included in Nature Communications in 2020.Synthetic Route of C39H76NO8P The following contents are mentioned in the article:
Abstract: Energy coupling factor (ECF) transporters are responsible for the uptake of micronutrients in bacteria and archaea. They consist of an integral membrane unit, the S-component, and a tripartite ECF module. It has been proposed that the S-component mediates the substrate transport by toppling over in the membrane when docking onto an ECF module. Here, we present multi-scale mol. dynamics simulations and in vitro experiments to study the mol. toppling mechanism of the S-component of a folate-specific ECF transporter. Simulations reveal a strong bending of the membrane around the ECF module that provides a driving force for toppling of the S-component. The stability of the toppled state depends on the presence of non-bilayer forming lipids, as confirmed by folate transport activity measurements. Together, our data provide evidence for a lipid-dependent toppling-based mechanism for the folate-specific ECF transporter, a mechanism that might apply to other ECF transporters. This study involved multiple reactions and reactants, such as (2R,9Z)-1-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)-3-(palmitoyloxy)propan-2-yl oleate (cas: 26662-94-2Synthetic Route of C39H76NO8P).
(2R,9Z)-1-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)-3-(palmitoyloxy)propan-2-yl oleate (cas: 26662-94-2) belongs to esters. Esters typically have a pleasant smell; those of low molecular weight are commonly used as fragrances and are found in essential oils and pheromones. Acyl chlorides and acid anhydrides alcoholysis is another way to produce esters. Acyl chlorides and acid anhydrides react with alcohols to produce esters. Anydrous conditions are recommended since both acyl chlorides and acid anhydrides react with water.Synthetic Route of C39H76NO8P
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics