Study on the mechanism of auto-oxidation of Jatropha biodiesel and the oxidative cleavage of C-C bond was written by Sui, Meng;Chen, Yong;Li, Fashe;Wang, Wenchao;Shen, Jiaxu. And the article was included in Fuel in 2021.COA of Formula: C8H16O2 The following contents are mentioned in the article:
Jatropha biodiesel was obtained according to the continuous preparation process which included vapor esterification – transesterification – methanol steam distillation Accelerated oxidation of small Jatropha biodiesel was obtained by the Rancimat method. GC-MS and liquid phase micro-extraction were used to study and analyze the components in the oxidation process of Jatropha curcas biodiesel. The electronic effects of the related reactants and products were calculated by d. functional theory, followed by the deduction of the related chem. reaction paths. Exptl. investigation shows that Me linoleate is the main factor affecting the oxidation stability of the Jatropha biodiesel. The main volatile products at the initial stages of the oxidation of Me linoleate are hexanal, Me octanoate, styrene, and 2-heptenal. The cis/trans-3-octyl-oxiranyl octanoic acid Me ester (18.03% yield) is produced by the reaction of peroxy acid and Me oleate during the oxidation of Me oleate. The hydrogen extraction reaction is difficult to occur, and the oxidation reaction energy barrier is relatively high due to the relatively large bond energy of the C-H bond in the Me stearate mol. In this manuscript, the auto-oxidation mechanism of the biodiesel fatty acid Me esters at the initial stage of oxidation, the path of oxidative cleavage of the C-C bond of Jatropha biodiesel and the formation process of ethylene oxide structure are obtained through DFT calculation and anal. of the oxidation products. This study involved multiple reactions and reactants, such as Methyl heptanoate (cas: 106-73-0COA of Formula: C8H16O2).
Methyl heptanoate (cas: 106-73-0) belongs to esters. Carboxylic acid esters of low molecular weight are colourless, volatile liquids with pleasant odours, slightly soluble in water. Esters contain a carbonyl center, which gives rise to 120° C–C–O and O–C–O angles. Unlike amides, esters are structurally flexible functional groups because rotation about the C–O–C bonds has a low barrier. Their flexibility and low polarity is manifested in their physical properties; they tend to be less rigid (lower melting point) and more volatile (lower boiling point) than the corresponding amides. COA of Formula: C8H16O2
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics