A scalable and robust cationic lipid/polymer hybrid nanoparticle platform for mRNA delivery was written by Meyer, Randall A.;Hussmann, G. Patrick;Peterson, Norman C.;Santos, Jose Luis;Tuesca, Anthony D.. And the article was included in International Journal of Pharmaceutics in 2022.Name: (6Z,9Z,28Z,31Z)-Heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate The following contents are mentioned in the article:
mRNA based gene therapies hold the potential to treat multiple diseases with significant advantages over DNA based therapies, including rapid protein expression and minimized risk of mutagenesis. However, successful delivery of mRNA remains challenging, and clin. translation of mRNA therapeutics has been limited. This study investigated the use of a lipid/polymer hybrid (LPH) nanocarrier for mRNA, designed to address key delivery challenges and shuttle mRNA to targeted tissues. LPH nanocarriers were synthesized using a scalable microfluidic process with a variety of material compositions and mRNA loading strategies. Results show that a combination of permanently ionized and transiently, pH-dependent ionizable cationic lipids had a synergistic effect upon on mRNA gene translation, when compared to each lipid independently. Upon i.v. administration, particles with adsorbed mRNA outperformed particles with encapsulated mRNA for protein expression in the lungs and the spleen despite significant LPH nanoparticle localization to the liver. In contrast, encapsulated particles had higher localized expression when injected i.m. with protein expression detectable out to 12 days post injection. I.m. administration of particles with OVA mRNA resulted in robust humoral immune response with encapsulated outperforming adsorbed particles in terms of antibody titers at 28 days. These results demonstrate LPH nanocarriers have great potential as a vehicle for mRNA delivery and expression in tissues and that tissue expression and longevity can be influenced by LPH composition and route of administration. This study involved multiple reactions and reactants, such as (6Z,9Z,28Z,31Z)-Heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (cas: 1224606-06-7Name: (6Z,9Z,28Z,31Z)-Heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate).
(6Z,9Z,28Z,31Z)-Heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (cas: 1224606-06-7) belongs to esters. Volatile esters with characteristic odours are used in synthetic flavours, perfumes, and cosmetics. Certain volatile esters are used as solvents for lacquers, paints, and varnishes. Because of their lack of hydrogen-bond-donating ability, esters do not self-associate. Consequently, esters are more volatile than carboxylic acids of similar molecular weight.Name: (6Z,9Z,28Z,31Z)-Heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics