Investigations into the Transfer Rate of Volatile Compounds in Dry Hopping Using an Octanol-Water Partition Coefficient Model was written by Haslbeck, Korbinian;Minkenberg, David;Coelhan, Mehmet. And the article was included in Journal of the American Society of Brewing Chemists in 2018.Recommanded Product: Methyl heptanoate The following contents are mentioned in the article:
Dry hopping is a powerful practice for imparting a multitude of flavors into beer. In this study, the influence of ethanol content, temperature, dosage, and hop variety on the transfer of essential oil during dry hopping was examined on a laboratory scale. The dry hopping was performed with nonalcoholic beer and beer containing 5.0 and 8.1% ethanol at 1 and 20°C using the hop varieties Tettnanger, Cascade, Hallertau Blanc, and Eureka. The results showed that the basic beer, hop variety, and dry hopping regime influence the composition of hop essential oil constituents in dry-hopped beer. The increase of the basic beer ethanol content, and especially the rise in temperature, led to a significant increase in the proportion of monoterpenes such as β-myrcene among hop volatiles in dry-hopped beers. Increasing hop dosage led to higher proportions of alc. compounds (linalool). Furthermore, the transfer rates of particular volatile hop-derived substances correlated with their octanol-water partition coefficients (log KOW), which is a measure of the hydrophobicity of a compound, regardless of tested factors in dry hopping. Therefore, it is proposed that the log KOW could be a useful model for the prediction of transfer rates of hop oil flavor components in dry hopping. However, the transfer rates of the alcs. linalool, geraniol, α-terpineol, and 1-octen-3-ol were higher than the expected levels from the log KOW values. These compounds are reported present in bound form in hops and released during dry hopping. This study involved multiple reactions and reactants, such as Methyl heptanoate (cas: 106-73-0Recommanded Product: Methyl heptanoate).
Methyl heptanoate (cas: 106-73-0) belongs to esters. Esters are widespread in nature and are widely used in industry. In nature, fats are in general triesters derived from glycerol and fatty acids. Esters are responsible for the aroma of many fruits, including apples, durians, pears, bananas, pineapples, and strawberries. Esterification is the general name for a chemical reaction in which two reactants (typically an alcohol and an acid) form an ester as the reaction product. Esters are common in organic chemistry and biological materials.Recommanded Product: Methyl heptanoate
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics