Structure-Odor Relationship Study on Geraniol, Nerol, and Their Synthesized Oxygenated Derivatives was written by Elsharif, Shaimaa Awadain;Buettner, Andrea. And the article was included in Journal of Agricultural and Food Chemistry in 2018.Safety of (2E,6E)-3,7-Dimethyl-8-oxoocta-2,6-dien-1-yl acetate The following contents are mentioned in the article:
Despite being isomers having the same citrus-like, floral odor, geraniol, 1, and nerol, 3, show different odor thresholds. To date, no systematic studies are at hand elucidating the structural features required for their specific odor properties. Therefore, starting from these two basic structures and their corresponding esters, namely, geranyl acetate, 2, and neryl acetate, 4, a total of 12 oxygenated compounds were synthesized and characterized regarding retention indexes (RI), mass spectrometric (MS), and NMR (NMR) data. All compounds were individually tested for their odor qualities and odor thresholds in air (OT). Geraniol, the Z-isomer, with an OT of 14 ng/L, was found to be more potent than its E-isomer, nerol, which has an OT of 60 ng/L. However, 8-oxoneryl acetate was the most potent derivative within this study, exhibiting an OT of 8.8 ng/L, whereas 8-oxonerol was the least potent with an OT of 493 ng/L. Interestingly, the 8-oxo derivatives smell musty and fatty, whereas the 8-hydroxy derivatives show odor impressions similar to those of 1 and 3. 8-Carboxygeraniol was found to be odorless, whereas its E-isomer, 8-carboxynerol, showed fatty, waxy, and greasy impressions. Overall, we observed that oxygenation on C-8 affects mainly the odor quality, whereas the E/Z position of the functional group on C-1 affects the odor potency. This study involved multiple reactions and reactants, such as (2E,6E)-3,7-Dimethyl-8-oxoocta-2,6-dien-1-yl acetate (cas: 37905-02-5Safety of (2E,6E)-3,7-Dimethyl-8-oxoocta-2,6-dien-1-yl acetate).
(2E,6E)-3,7-Dimethyl-8-oxoocta-2,6-dien-1-yl acetate (cas: 37905-02-5) belongs to esters. Esters typically have a pleasant smell; those of low molecular weight are commonly used as fragrances and are found in essential oils and pheromones. Esters are more polar than ethers but less polar than alcohols. They participate in hydrogen bonds as hydrogen-bond acceptors, but cannot act as hydrogen-bond donors, unlike their parent alcohols. This ability to participate in hydrogen bonding confers some water-solubility.Safety of (2E,6E)-3,7-Dimethyl-8-oxoocta-2,6-dien-1-yl acetate
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics