Jiao, Jiao team published research on Organic & Biomolecular Chemistry in 2021 | 611-13-2

Application In Synthesis of 611-13-2, Methyl 2-furoate has been identified as one of the volatile flavor compounds in tequila, okra, berrycactus and black currant juice.
Methyl 2-furoate, also known as fema 2703 or methyl pyromucate, belongs to the class of organic compounds known as furoic acid esters. These are ester derivatives of furoic acid. Methyl 2-furoate is soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Within the cell, methyl 2-furoate is primarily located in the cytoplasm. Methyl 2-furoate is a sweet, fruity, and fungal tasting compound that can be found in a number of food items such as cocoa and cocoa products, potato, tamarind, and fruits. This makes methyl 2-furoate a potential biomarker for the consumption of these food products.
Methyl 2-furoate is a reactive compound that belongs to the family of sesquiterpene lactones. It has been shown to have phosphotungstic acid and hydrochloric acid reactivity, as well as nitrous and water vapor sensitivity. Methyl 2-furoate also reacts with radiation, which can be used for structural analysis. The compound is an intermediate in the synthesis of pluronic p123, which is used in fabricating biomedical devices. Methyl 2-furoate has been shown to have anti-inflammatory properties through its inhibitory effect on prostaglandin synthesis., 611-13-2.

Esters typically have a pleasant smell; those of low molecular weight are commonly used as fragrances and are found in essential oils and pheromones. 611-13-2, formula is C6H6O3, Name is Methyl furan-2-carboxylate. They perform as high-grade solvents for a broad array of plastics, plasticizers, resins, and lacquers, and are one of the largest classes of synthetic lubricants on the commercial market. Application In Synthesis of 611-13-2.

Jiao, Jiao;Nie, Wenzheng;Song, Peidong;Li, Pengfei research published 《 A new air-stable Si,S-chelating ligand for Ir-catalyzed directed ortho C-H borylation》, the research content is summarized as follows. A new air-stable Si,S-chelating ligand 1-(iPrS)-2-(iPr2SiH)C6H4 (HL) has been developed and used in a directed ortho C-H borylation reaction of aromatic and heterocyclic compounds with B2pin2 catalyzed by [Ir(OMe)(cod)]2/HL combination with a broad substrate scope, providing o-boryl-substituted aromatic and heterocyclic esters, amides and amines. This study provides the first example of using a sulfur-containing ligand in the catalytic C-H borylation process. It provides a rapid, efficient, and economical method for the preparation of organoboron compounds

Application In Synthesis of 611-13-2, Methyl 2-furoate has been identified as one of the volatile flavor compounds in tequila, okra, berrycactus and black currant juice.
Methyl 2-furoate, also known as fema 2703 or methyl pyromucate, belongs to the class of organic compounds known as furoic acid esters. These are ester derivatives of furoic acid. Methyl 2-furoate is soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Within the cell, methyl 2-furoate is primarily located in the cytoplasm. Methyl 2-furoate is a sweet, fruity, and fungal tasting compound that can be found in a number of food items such as cocoa and cocoa products, potato, tamarind, and fruits. This makes methyl 2-furoate a potential biomarker for the consumption of these food products.
Methyl 2-furoate is a reactive compound that belongs to the family of sesquiterpene lactones. It has been shown to have phosphotungstic acid and hydrochloric acid reactivity, as well as nitrous and water vapor sensitivity. Methyl 2-furoate also reacts with radiation, which can be used for structural analysis. The compound is an intermediate in the synthesis of pluronic p123, which is used in fabricating biomedical devices. Methyl 2-furoate has been shown to have anti-inflammatory properties through its inhibitory effect on prostaglandin synthesis., 611-13-2.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics