Glycerides are fatty acid esters of glycerol; they are important in biology, being one of the main classes of lipids and comprising the bulk of animal fats and vegetable oils. 2495-37-6, formula is C11H12O2, Name is Benzyl methacrylate. Esters typically have a pleasant smell; those of low molecular weight are commonly used as fragrances and are found in essential oils and pheromones. Application In Synthesis of 2495-37-6.
Herbort, James H.;Lalisse, Remy F.;Hadad, Christopher M.;RajanBabu, T. V. research published 《 Cationic Co(I) Catalysts for Regiodivergent Hydroalkenylation of 1,6-Enynes: An Uncommon cis-α-C-H Activation Leads to Z-Selective Coupling of Acrylates》, the research content is summarized as follows. Two intermol. hydroalkenylation reactions of 1,6-enynes N(R)(CH2CH=CH2)CH2CCR1 (R = -N(Ts)-, -C(COOEt)2-, -O-, -N(Boc)-; R1 = 4-fluorophenyl, thiophen-3-yl, prop-1-en-2-yl, etc.) are presented which yield substituted 5-membered carbo- and -heterocycles I (R = -N(Ts)-, -C(COOEt)2-; R2 = H, Me; R3 = H, Me, n-Bu). This reactivity is enabled by a cationic bis-diphenylphosphinopropane (DPPP)CoI species which forms a cobaltacyclopentene intermediate by oxidative cyclization of the enyne. This key species interacts with alkenes in distinct fashion, depending on the identity of the coupling partner to give regiodivergent products I. Simple alkenes undergo insertion reactions to furnish 1,3-dienes whereby one of the alkenes is tetrasubstituted. The acerylates R4CH=C(R5)C(O)OR6 (R4 = H, Me, OMe; R5 = H, Me; R6 = Me, Bn, Cy, t-Bu) were employed as coupling partners, and the site of intermol. C-C formation shifts from the alkyne to the alkene motif of the enyne, yielding Z-substituted-acrylate derivatives II. Computational studies provide support for the exptl. observations and show that the turnover-limiting steps in both reactions are the interactions of the alkenes with the cobaltacyclopentene intermediate via either a 1,2-insertion in the case of ethylene, or an unexpected α-C-H activation in the case of most acrylates. Thus, the H syn to the ester is activated through the coordination of the acrylate carbonyl to the cobaltacycle intermediate, which explains the uncommon Z-selectivity and regiodivergence. Variable time normalization anal. (VTNA) of the kinetic data reveals a dependence upon the concentration of cobalt, acrylate, and activator. A KIE of 2.1 was observed with Me methacrylate in sep. flask experiments, indicating that C-H cleavage is the turnover-limiting step in the catalytic cycle. Lastly, a Hammett study of aryl-substituted enynes yields a ρ value of -0.4, indicating that more electron-rich substituents accelerate the rate of the reaction.
2495-37-6, Benzyl methacrylate, also known as Benzyl methacrylate, is a useful research compound. Its molecular formula is C11H12O2 and its molecular weight is 176.21 g/mol. The purity is usually 95%.
Benzyl methacrylate is a chemical compound that belongs to the group of benzyl compounds. It has a copolymer structure with methyl ethyl methacrylate (MEMA) and hydroxyl groups. Benzyl methacrylate is produced by polymerization of benzyl chloride with allyl carbonate in the presence of radiation, forming a polymeric matrix. The morphology of this copolymer depends on the length of the benzyl chains and the concentration of MEMA., Application In Synthesis of 2495-37-6
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics