Gilleran, John A. team published research on Journal of Medicinal Chemistry in 2021 | 870-50-8

870-50-8, Di-tert-butyl azodicarboxylate, also known as Di-tert-butyl azodicarboxylate, is a useful research compound. Its molecular formula is C₁₀H₁₈N₂O₄ and its molecular weight is 230.26 g/mol. The purity is usually 95%.
Di-tert-butyl azodicarboxylate is a reagent used in the electrophilic amination of β-keto esters catalyzed by an axially chiral guanidine. Building block in an enantioselective synthesis of 3,6-dihyropyridazines employing organocatalysts such a L-proline or (S)-2-pyrrolidinyl tetrazole. Utilized in the asymmetric Friedel-Crafts amination via a chiral organocatalyst.
Di-tert-butyl azodicarboxylate is a reagent used in the preparation of acyl hydrazinedicarboxylates via photoorganocatalytic hydroacylation of dialkyl azodicarboxylates with aldehydes in presence of phenylglyoxylic acid as photocatalyst., SDS of cas: 870-50-8

Ester is a chemical compound derived from an oxoacid (organic or inorganic) in which at least one –OH hydroxyl group is replaced by an –O– alkyl (alkoxy) group, 870-50-8, formula is C10H18N2O4, Name is Di-tert-butyl diazene-1,2-dicarboxylate. as in the substitution reaction of a carboxylic acid and an alcohol. SDS of cas: 870-50-8.

Gilleran, John A.;Yu, Xin;Blayney, Alan J.;Bencivenga, Anthony F.;Na, Bing;Augeri, David J.;Blanden, Adam R.;Kimball, S. David;Loh, Stewart N.;Roberge, Jacques Y.;Carpizo, Darren R. research published 《 Benzothiazolyl and Benzoxazoyl Hydrazones Function as Zinc Metallochaperones to Reactivate Mutant p53》, the research content is summarized as follows. We identified a set of thiosemicarbazone (TSC) metal ion chelators that reactivate specific zinc-deficient p53 mutants using a mechanism called zinc metallochaperones (ZMCs) that restore zinc binding by shuttling zinc into cells. We defined biophys. and cellular assays necessary for structure-activity relationship studies using this mechanism. We investigated an alternative class of zinc scaffolds that differ from TSCs by substitution of the thiocarbamoyl moiety with benzothiazoyl, benzoxazoyl, and benzimidazoyl hydrazones. Members of this series bound zinc with similar affinity and functioned to reactivate mutant p53 comparable to the TSCs. Acute toxicity and efficacy assays in rodents demonstrated C1 to be significantly less toxic than the TSCs while demonstrating equivalent growth inhibition. We identified C85 as a ZMC with diminished copper binding that functions as a chemotherapy and radiation sensitizer. We conclude that the benzothiazoyl, benzoxazoyl, and benzimidazoyl hydrazones can function as ZMCs to reactivate mutant p53 in vitro and in vivo.

870-50-8, Di-tert-butyl azodicarboxylate, also known as Di-tert-butyl azodicarboxylate, is a useful research compound. Its molecular formula is C₁₀H₁₈N₂O₄ and its molecular weight is 230.26 g/mol. The purity is usually 95%.
Di-tert-butyl azodicarboxylate is a reagent used in the electrophilic amination of β-keto esters catalyzed by an axially chiral guanidine. Building block in an enantioselective synthesis of 3,6-dihyropyridazines employing organocatalysts such a L-proline or (S)-2-pyrrolidinyl tetrazole. Utilized in the asymmetric Friedel-Crafts amination via a chiral organocatalyst.
Di-tert-butyl azodicarboxylate is a reagent used in the preparation of acyl hydrazinedicarboxylates via photoorganocatalytic hydroacylation of dialkyl azodicarboxylates with aldehydes in presence of phenylglyoxylic acid as photocatalyst., SDS of cas: 870-50-8

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics