Polyesters are important plastics, with monomers linked by ester moieties. Phosphoesters form the backbone of DNA molecules. 870-50-8, formula is C10H18N2O4, Name is Di-tert-butyl diazene-1,2-dicarboxylate.Nitrate esters, such as nitroglycerin, are known for their explosive properties. Computed Properties of 870-50-8.
Finck, Lucie;Oestreich, Martin research published 《 Transition-Metal-Free Coupling of Polyfluorinated Arenes and Functionalized, Masked Aryl Nucleophiles》, the research content is summarized as follows. A chemoselective C(sp2)-C(sp2) coupling of sufficiently electron-deficient fluorinated arenes and functionalized N-aryl-N’-silyldiazenes as masked aryl nucleophiles is reported. The fluoride-promoted transformation involves the in situ generation of the aryl nucleophile decorated with various sensitive functional groups followed by a stepwise nucleophilic aromatic substitution (SNAr). These reactions typically proceed at room temperature within minutes. This catalytic process allows for the functionalization of both coupling partners, furnishing highly fluorinated biaryls in good yields. Thus, e.g., diazene I + hexafluorobenzene → II (92%, 79% isolated) in presence of CsF in DMF.
Computed Properties of 870-50-8, Di-tert-butyl azodicarboxylate, also known as Di-tert-butyl azodicarboxylate, is a useful research compound. Its molecular formula is C₁₀H₁₈N₂O₄ and its molecular weight is 230.26 g/mol. The purity is usually 95%.
Di-tert-butyl azodicarboxylate is a reagent used in the electrophilic amination of β-keto esters catalyzed by an axially chiral guanidine. Building block in an enantioselective synthesis of 3,6-dihyropyridazines employing organocatalysts such a L-proline or (S)-2-pyrrolidinyl tetrazole. Utilized in the asymmetric Friedel-Crafts amination via a chiral organocatalyst.
Di-tert-butyl azodicarboxylate is a reagent used in the preparation of acyl hydrazinedicarboxylates via photoorganocatalytic hydroacylation of dialkyl azodicarboxylates with aldehydes in presence of phenylglyoxylic acid as photocatalyst., 870-50-8.
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics