Recommanded Product: (11bR)-N,N-Bis[(1R)-1-phenylethyl]dinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepin-4-amine. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: (11bR)-N,N-Bis[(1R)-1-phenylethyl]dinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepin-4-amine, is researched, Molecular C36H30NO2P, CAS is 415918-91-1, about Palladium-Catalyzed Enantioselective Cycloadditions of Aliphatic 1,4-Dipoles: Access to Chiral Cyclohexanes and Spiro [2.4] heptanes. Author is Trost, Barry M.; Jiao, Zhiwei; Liu, Ying; Min, Chang; Hung, Chao-I. Joey.
Design and exploration of new intermediates for chemo-, regio-, and stereoselective cycloadditions remain a formidable challenge in modern organic synthesis. Compared to the well-developed 1,3-dipolar cycloadditions, Pd-catalyzed 1,4-dipolar cycloadditions are generally limited to specialized substrates due to the inherent nature of the thermodynamically driven intramol. transformations and undesired isomerizations. Herein, we demonstrate the use of ligated palladium catalysts to control and modulate the intermol. reactivity of aliphatic 1,4-dipoles, enabling two distinctive cycloaddition pathways with a broad scope of acceptors. This atom-economic process also features an eco-friendly in situ deprotonation strategy to generate the corresponding active palladium-mediated dipoles. Overall, a diverse array of chiral 6-membered rings and spiro [2.4] heptanes were prepared in high yield and selectivity. In addition, an unexpected property of cyano-stabilized carbanions was discovered and investigated, which can be useful in designing and predicting future transformations.
In some applications, this compound(415918-91-1)Recommanded Product: (11bR)-N,N-Bis[(1R)-1-phenylethyl]dinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepin-4-amine is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.
Reference:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics