Product Details of 103-26-4. In 2020.0 REACT CHEM ENG published article about BAYLIS-HILLMAN REACTION; BIO-BASED SOLVENTS; GAMMA-VALEROLACTONE; PROPYLENE CARBONATE; HECK REACTION; DIHYDROLEVOGLUCOSENONE CYRENE; MECHANISM; CHALLENGES; REACTIVITY; CATALYST in [Sangon, Suwiwat; Supanchaiyamat, Nontipa; Hunt, Andrew J.] Khon Kaen Univ, Fac Sci, Mat Chem Res Ctr, Dept Chem, Khon Kaen 40002, Thailand; [Sherwood, James; McElroy, Con R.] Univ York, Green Chem Ctr Excellence, Dept Chem, York YO10 5DD, N Yorkshire, England in 2020.0, Cited 44.0. The Name is Methyl 3-phenyl-2-propenoate. Through research, I have a further understanding and discovery of 103-26-4.
There is a lot of interest in the development of new, safer and more sustainable polar aprotic solvents due to their importance in industrial applications and significant safety issues with the most commonly used examples. One such area of application is in pharmaceutically relevant C-C coupling reactions, where polar aprotic solvents are commonly used for solubility and to stabilise reaction intermediates. Although there are now a number of excellent alternatives in the literature, to date they have not been compared in a single study. This study demonstrates the effectiveness of the green solventsN-butylpyrrolidinone (NBP), gamma-valerolactone (GVL), propylene carbonate (PC) and dihydrolevoglucosenone (Cyrene) in Heck and Baylis-Hillman reactions. Good conversions and initial rates were observed in GVL and NBP in Heck reactions. Cyrene exhibited high initial rates of reaction and high yields in the Baylis-Hillman reaction. This demonstrates Cyrene to be a promising alternative polar aprotic solvent for this reaction.
Product Details of 103-26-4. Bye, fridends, I hope you can learn more about C10H10O2, If you have any questions, you can browse other blog as well. See you lster.
Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics