In 2019 J PHOTOCH PHOTOBIO A published article about AGGREGATION-INDUCED EMISSION; CONJUGATED POLYMER NANOPARTICLES; INTRAMOLECULAR EXCIMER FORMATION; LIGHT-UP PROBE; PICRIC ACID; TUNABLE EMISSION; TETRAPHENYLETHYLENE; EFFICIENCY; SENSORS; SIZE in [Panigrahi, Abhiram; Mandani, Sonam; Sarma, Tridib K.] Indian Inst Technol Indore, Discipline Chem, Khandwa Rd, Indore 453552, Madhya Pradesh, India; [Sahu, Basanta P.; Nayak, Debasis] Indian Inst Technol Indore, Ctr Biosci & Biomed Engn, Khandwa Rd, Indore 453552, Madhya Pradesh, India; [Giri, Santanab] Haldia Inst Technol, Sch Appl Sci & Humanities, Haldia 721657, India in 2019, Cited 66. The Name is Dimethyl 5-aminoisophthalate. Through research, I have a further understanding and discovery of 99-27-4. COA of Formula: C10H11NO4
Development of organic nanoparticles with high fluorescence, good biocompatibility along with strong resistance to photobleaching through simple synthetic routes is important for diverse applications such as sensing and bioimaging. Herein, we present the development of a pyrene excimer nanoaggregate which shows aggregation induced emission (AIE) effect in a solvent mixture of THE and water. The pyrene based fluorescent probe, dimethyl-5-(pyren-1-ylmethyleneamino)isophthalate (5-DP) was synthesized through a simple single step condensation reaction from inexpensive reagents. The photophysical studies of nanoaggregated system further corroborates the AIE active behavior of 5-DP probe at different water fractions (f(w) = 0% to 90%), where the hydrogen bonding interaction between imine and water molecules led to suppression of photoinduced electron transfer (PET) inducing significant enhancement in fluorescence. The highly photostable nanoaggregates were explored as a selective fluorescence turn off sensor for phenolic nitroaromatics and the chemo-selectivity was highly pronounced for 2,4,6-trinitrophenol (picric acid), that showed efficient quenching in aqueous as well as solid phase, with a detection limit of 10 nM in aqueous medium. The quenching efficiency of the nanoaggregates can be ascribed to a combination of factors including efficient fluorescence resonance energy transfer, inner filter effect and coulombic interaction between picric acid and the aggregated probe molecules. Further, random aggregation of the pyrene derivative could be controlled for the formation of fluorescent spherical nanoparticles using Pluoronics P-123 block copolymers as encapsulating agents. The resulting composite could be used as a neoteric cell imaging probe with significantly less cytotoxicity, thus showing their potential biological applications.
COA of Formula: C10H11NO4. Welcome to talk about 99-27-4, If you have any questions, you can contact Panigrahi, A; Sahu, BP; Mandani, S; Nayak, D; Giri, S; Sarma, TK or send Email.
Reference:
Patent; ASTRA ZENECA AB; NPS PHARMACEUTICALS, INC.; WO2004/14881; (2004); A2;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics