Analyzing the synthesis route of 89-71-4

The synthetic route of 89-71-4 has been constantly updated, and we look forward to future research findings.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 89-71-4, name is Methyl 2-methylbenzoate, A new synthetic method of this compound is introduced below., Recommanded Product: 89-71-4

General procedure: To a solution of 6.0 g (0.04 mol) of methyl 2-methylbenzoate derivatives in 38 mL of chloroform, 7.5 g (0.042 mol) of N-bromosuccinimide and 0.078 g of benzoyl peroxide were added and carefully warmed up to 65 C until reaction started. Then the mixture was refluxed for 5 h. After cooling down to room temperature, the deposit of succinimide was filtered. The solvent was removed under reduced pressure and the crude product was used in the next step without further purification. To a solution of functionalized methyl 2-(bromomethyl)benzoate (6.55 mmol), substituted phenol (8.5 mmol), K3PO4 (16.4 mmol) and toluene 20 mL were added to Schlenk under argon. The resulting solution was stirred to 110 C for 5 h. The progress of the reaction was monitored by TLC. The mixture was extracted with EtOAc, washed with water, brine and the combined organic layers were dried over anhydrous Na2SO4and the solvent was removed under reduced pressure. The crude product was used in the next step without further purification. To the solution of the ester (0.015 mol) in MeOH (73 mL), was added 13 mL aqueous KOH (20%) and refluxed at 80C for 5 h. MeOH was removed and the aqueous phase was washed with DCM. After acidifying with HCl (10%) the deposit was collected and washed with water.

The synthetic route of 89-71-4 has been constantly updated, and we look forward to future research findings.

Reference:
Article; Scoccia, Jimena; Castro, M. Julia; Faraoni, M. Belen; Bouzat, Cecilia; Martin, Victor S.; Gerbino, Dario C.; Tetrahedron; vol. 73; 20; (2017); p. 2913 – 2922;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics