In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 148547-19-7 as follows. 148547-19-7
Step A. Methyl 2,2′-dimethyl-1,1′-biphenyl-4-carboxylate A mixture of methyl 4-bromo-3-methylbenzoate (25.0 g, 110 mmol), o-tolylboronic acid (16.5 g, 120 mmol) and potassium carbonate (50 g, 360 mmol) in dioxane/water (300 mL:200 mL) was purged with nitrogen for 1 hour. [1,-bis(Diphenylphosphino) ferrocene]dichloropalladium [II] (4.5 g, 5.5 mmol) was added. The reaction mixture was heated to 100 C. with vigorous stirring for 3.5 hours, then cooled and filtered through Celitee (Celite Corp., Santa Barbara, Calif.). The cake was washed with ethyl acetate (500 mL). The combined organic phases were washed with 1N sodium hydroxide (500 mL) and brine (500 mL), dried over anhydrous potassium carbonate, and concentrated in vacuo to afford a dark oil (28.6 g). Purification by flash chromatography using 2% ethyl acetate in hexanes as solvent provided the title compound (24.7 g, 93%) as a pale yellow oil. MS [(+)ESI, m/z]: 241 [M+H]+ HRMS [(+)ESI, m/z]: 241.12205 [M+H]+. Calcd for C16H17O2: 241.12286 Anal. Calcd for C16H16O2: C, 79.97; H, 6.71. Found: C, 79.67; H, 6.61.
According to the analysis of related databases, 148547-19-7, the application of this compound in the production field has become more and more popular.
Reference:
Patent; Wyeth; US2006/199806; (2006); A1;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics